Search results
Results from the WOW.Com Content Network
To convert a hexadecimal number into its binary equivalent, simply substitute the corresponding binary digits: 3A 16 = 0011 1010 2 E7 16 = 1110 0111 2. To convert a binary number into its hexadecimal equivalent, divide it into groups of four bits. If the number of bits isn't a multiple of four, simply insert extra 0 bits at the left (called ...
The HP Saturn processors, used in many Hewlett-Packard calculators between 1984 and 2003 (including the HP 48 series of scientific calculators) are "4-bit" (or hybrid 64-/4-bit) machines; as the Intel 4004 did, they string multiple 4-bit words together, e.g. to form a 20-bit memory address, and most of the registers are 64 bits wide, storing 16 ...
This is a list of some binary codes that are (or have been) used to represent text as a sequence of binary digits "0" and "1". Fixed-width binary codes use a set number of bits to represent each character in the text, while in variable-width binary codes, the number of bits may vary from character to character.
an 11-bit binary exponent, using "excess-1023" format. Excess-1023 means the exponent appears as an unsigned binary integer from 0 to 2047; subtracting 1023 gives the actual signed value; a 52-bit significand, also an unsigned binary number, defining a fractional value with a leading implied "1" a sign bit, giving the sign of the number.
The following charts show the numeric values of BCD characters in hexadecimal (base-16) notation, as that most clearly reflects the structure of 4-bit binary coded decimal, plus two extra bits. For example, the code for 'A', in row 3x and column x1, is hexadecimal 31, or binary '11 0001'.
The reason for adding 6 is that there are 16 possible 4-bit BCD values (since 2 4 = 16), but only 10 values are valid (0000 through 1001). For example: 1001 + 1000 = 10001 9 + 8 = 17 10001 is the binary, not decimal, representation of the desired result, but the most significant 1 (the "carry") cannot fit in a 4-bit binary number.
The modern binary number system, the basis for binary code, is an invention by Gottfried Leibniz in 1689 and appears in his article Explication de l'Arithmétique Binaire (English: Explanation of the Binary Arithmetic) which uses only the characters 1 and 0, and some remarks on its usefulness. Leibniz's system uses 0 and 1, like the modern ...
These prefixes are more often used for multiples of bytes, as in kilobyte (1 kB = 8000 bit), megabyte (1 MB = 8 000 000 bit), and gigabyte (1 GB = 8 000 000 000 bit). However, for technical reasons, the capacities of computer memories and some storage units are often multiples of some large power of two, such as 2 28 = 268 435 456 bytes.