Search results
Results from the WOW.Com Content Network
The orthogonal group is an algebraic group and a Lie group. It is compact. The orthogonal group in dimension n has two connected components. The one that contains the identity element is a normal subgroup, called the special orthogonal group, and denoted SO(n). It consists of all orthogonal matrices of determinant 1.
The rotation group is a group under function composition (or equivalently the product of linear transformations). It is a subgroup of the general linear group consisting of all invertible linear transformations of the real 3-space. [2] Furthermore, the rotation group is nonabelian. That is, the order in which rotations are composed makes a ...
The odd-dimensional rotation groups do not contain the central inversion and are simple groups. The even-dimensional rotation groups do contain the central inversion −I and have the group C 2 = {I, −I} as their centre. For even n ≥ 6, SO(n) is almost simple in that the factor group SO(n)/C 2 of SO(n) by its centre is a simple group.
The set of n × n orthogonal matrices, under multiplication, forms the group O(n), known as the orthogonal group. The subgroup SO(n) consisting of orthogonal matrices with determinant +1 is called the special orthogonal group, and each of its elements is a special orthogonal matrix. As a linear transformation, every special orthogonal matrix ...
Rotation matrices have a determinant of +1, and reflection matrices have a determinant of −1. The set of all orthogonal two-dimensional matrices together with matrix multiplication form the orthogonal group: O(2). The following table gives examples of rotation and reflection matrix :
They form the special orthogonal group SO(2). A rotation around c can be accomplished by first translating c to the origin, then performing the rotation around the origin, and finally translating the origin back to c. That is, , =,, or in other words,
Non-countable groups, where for all points the set of images under the isometries is closed e.g.: all direct isometries that keep the origin fixed, or more generally, some point (in 3D called the rotation group) all isometries that keep the origin fixed, or more generally, some point (the orthogonal group) all direct isometries E + (n)
In mathematics, the special orthogonal group in three dimensions, otherwise known as the rotation group SO(3), is a naturally occurring example of a manifold.The various charts on SO(3) set up rival coordinate systems: in this case there cannot be said to be a preferred set of parameters describing a rotation.