Search results
Results from the WOW.Com Content Network
In the analytic theory of continued fractions, Euler's continued fraction formula is an identity connecting a certain very general infinite series with an infinite continued fraction. First published in 1748, it was at first regarded as a simple identity connecting a finite sum with a finite continued fraction in such a way that the extension ...
This last non-simple continued fraction (sequence A110185 in the OEIS), equivalent to = [;,,,,,...], has a quicker convergence rate compared to Euler's continued fraction formula [clarification needed] and is a special case of a general formula for the exponential function:
The definition of equivalence relations implies that the equivalence classes form a partition of , meaning, that every element of the set belongs to exactly one equivalence class. The set of the equivalence classes is sometimes called the quotient set or the quotient space of S {\displaystyle S} by ∼ , {\displaystyle \,\sim \,,} and is ...
A fixed-point representation of a fractional number is essentially an integer that is to be implicitly multiplied by a fixed scaling factor. For example, the value 1.23 can be stored in a variable as the integer value 1230 with implicit scaling factor of 1/1000 (meaning that the last 3 decimal digits are implicitly assumed to be a decimal fraction), and the value 1 230 000 can be represented ...
The union-closed sets conjecture, also known as Frankl’s conjecture, is an open problem in combinatorics posed by Péter Frankl in 1979. A family of sets is said to be union-closed if the union of any two sets from the family belongs to the family.
The maximum fractional matching size in a graph = (,) is the solution of the following linear program: Maximize 1 E · x. Subject to: x ≥ 0 E _____ A G · x ≤ 1 V. where x is a vector of size |E| in which each element represents the weight of an edge in the fractional matching.
Sobolev spaces with p = 2 are especially important because of their connection with Fourier series and because they form a Hilbert space. A special notation has arisen to cover this case, since the space is a Hilbert space: