enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Electrical resistivity and conductivity - Wikipedia

    en.wikipedia.org/wiki/Electrical_resistivity_and...

    The effective temperature coefficient varies with temperature and purity level of the material. The 20 °C value is only an approximation when used at other temperatures. For example, the coefficient becomes lower at higher temperatures for copper, and the value 0.00427 is commonly specified at 0 °C. [53]

  3. Siemens (unit) - Wikipedia

    en.wikipedia.org/wiki/Siemens_(unit)

    The siemens (symbol: S) is the unit of electric conductance, electric susceptance, and electric admittance in the International System of Units (SI). Conductance, susceptance, and admittance are the reciprocals of resistance, reactance, and impedance respectively; hence one siemens is equal to the reciprocal of one ohm (Ω −1) and is also referred to as the mho.

  4. Thermal conductivity and resistivity - Wikipedia

    en.wikipedia.org/wiki/Thermal_conductivity_and...

    Consider a solid material placed between two environments of different temperatures. Let be the temperature at = and be the temperature at =, and suppose >. An example of this scenario is a building on a cold winter day; the solid material in this case is the building wall, separating the cold outdoor environment from the warm indoor environment.

  5. Electrical resistance and conductance - Wikipedia

    en.wikipedia.org/wiki/Electrical_resistance_and...

    Also called chordal or DC resistance This corresponds to the usual definition of resistance; the voltage divided by the current R s t a t i c = V I. {\displaystyle R_{\mathrm {static} }={V \over I}.} It is the slope of the line (chord) from the origin through the point on the curve. Static resistance determines the power dissipation in an electrical component. Points on the current–voltage ...

  6. Thermal conductance and resistance - Wikipedia

    en.wikipedia.org/wiki/Thermal_conductance_and...

    Aerospace: In spacecraft and aircraft, thermal resistance and conductance are critical for managing temperature variations in extreme environments. Designing spacecraft and aviation systems require considerations of thermal conductance and resistance to manage temperature extremes.

  7. Steinhart–Hart equation - Wikipedia

    en.wikipedia.org/wiki/Steinhart–Hart_equation

    is the temperature (in kelvins), R {\displaystyle R} is the resistance at T {\displaystyle T} (in ohms), A {\displaystyle A} , B {\displaystyle B} , and C {\displaystyle C} are the Steinhart–Hart coefficients , which are characteristics specific to the bulk semiconductor material over a given temperature range of interest.

  8. Callendar–Van Dusen equation - Wikipedia

    en.wikipedia.org/wiki/Callendar–Van_Dusen_equation

    The Callendar–Van Dusen equation is an equation that describes the relationship between resistance (R) and temperature (T) of platinum resistance thermometers (RTD). As commonly used for commercial applications of RTD thermometers, the relationship between resistance and temperature is given by the following equations.

  9. Conductivity (electrolytic) - Wikipedia

    en.wikipedia.org/wiki/Conductivity_(electrolytic)

    Determination of the precise temperature coefficient for a specific solution is simple and instruments are typically capable of applying the derived coefficient (i.e. other than 2%). Measurements of conductivity σ {\displaystyle \sigma } versus temperature can be used to determine the activation energy E A {\displaystyle E_{A}} , using the ...