Search results
Results from the WOW.Com Content Network
Exponentiation is written as b n, where b is the base and n is the power; often said as "b to the power n ". [1] When n is a positive integer , exponentiation corresponds to repeated multiplication of the base: that is, b n is the product of multiplying n bases: [ 1 ] b n = b × b × ⋯ × b × b ⏟ n times . {\displaystyle b^{n}=\underbrace ...
A powerful number is a positive integer m such that for every prime number p dividing m, p 2 also divides m.Equivalently, a powerful number is the product of a square and a cube, that is, a number m of the form m = a 2 b 3, where a and b are positive integers.
"A base is a natural number B whose powers (B multiplied by itself some number of times) are specially designated within a numerical system." [1]: 38 The term is not equivalent to radix, as it applies to all numerical notation systems (not just positional ones with a radix) and most systems of spoken numbers. [1]
Power rule; Chain rule; Local linearization; Product rule; Quotient rule; Inverse functions and differentiation; Implicit differentiation; Stationary point. Maxima and minima; First derivative test; Second derivative test; Extreme value theorem; Differential equation; Differential operator; Newton's method; Taylor's theorem; L'Hôpital's rule ...
The smallest natural power of two whose decimal representation begins with 7 is [10] = Every power of 2 (excluding 1) can be written as the sum of four square numbers in 24 ways. The powers of 2 are the natural numbers greater than 1 that can be written as the sum of four square numbers in the fewest ways.
Loaded with sausage, veggies, and plenty of cheese, this easy weeknight dinner has all of the cheesy, tomato-filled goodness of our favorite take-out pizza, neatly packaged in a 13"-by-9" pan. Get ...
In elementary algebra, the binomial theorem (or binomial expansion) describes the algebraic expansion of powers of a binomial.According to the theorem, the power (+) expands into a polynomial with terms of the form , where the exponents and are nonnegative integers satisfying + = and the coefficient of each term is a specific positive integer ...
The term was coined by 9-year-old Milton Sirotta, nephew of American mathematician Edward Kasner. It was popularized in Kasner's 1940 book Mathematics and the Imagination, where it was used to compare and illustrate very large numbers. Googolplex, a much larger power of ten (10 to the googol power, or 10 10 100), was also introduced in that book.