enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Necessity and sufficiency - Wikipedia

    en.wikipedia.org/wiki/Necessity_and_sufficiency

    The assertion that Q is necessary for P is colloquially equivalent to "P cannot be true unless Q is true" or "if Q is false, then P is false". [9] [1] By contraposition, this is the same thing as "whenever P is true, so is Q". The logical relation between P and Q is expressed as "if P, then Q" and denoted "P ⇒ Q" (P implies Q).

  3. Material implication (rule of inference) - Wikipedia

    en.wikipedia.org/wiki/Material_implication_(rule...

    Then if is true, that rules out the first disjunct, so we have . In short, P → Q {\displaystyle P\to Q} . [ 3 ] However, if P {\displaystyle P} is false, then this entailment fails, because the first disjunct ¬ P {\displaystyle \neg P} is true, which puts no constraint on the second disjunct Q {\displaystyle Q} .

  4. Implicational propositional calculus - Wikipedia

    en.wikipedia.org/wiki/Implicational...

    However, if one adds a nullary connective ⊥ for falsity, then one can define all other truth functions. Formulas over the resulting set of connectives {→, ⊥} are called f-implicational. [1] If P and Q are propositions, then: ¬P is equivalent to P → ⊥; P ∧ Q is equivalent to (P → (Q → ⊥)) → ⊥; P ∨ Q is equivalent to (P ...

  5. If and only if - Wikipedia

    en.wikipedia.org/wiki/If_and_only_if

    In most logical systems, one proves a statement of the form "P iff Q" by proving either "if P, then Q" and "if Q, then P", or "if P, then Q" and "if not-P, then not-Q". Proving these pairs of statements sometimes leads to a more natural proof, since there are not obvious conditions in which one would infer a biconditional directly.

  6. Truth table - Wikipedia

    en.wikipedia.org/wiki/Truth_table

    Thus, the function f itself can be listed as: f = {((0, 0), f 0), ((0, 1), f 1), ((1, 0), f 2), ((1, 1), f 3)}, where f 0, f 1, f 2, and f 3 are each Boolean, 0 or 1, values as members of the codomain {0, 1}, as the outputs corresponding to the member of the domain, respectively. Rather than a list (set) given above, the truth table then ...

  7. Affirming the consequent - Wikipedia

    en.wikipedia.org/wiki/Affirming_the_consequent

    On the other hand, one can affirm with certainty that "if someone does not live in California" (non-Q), then "this person does not live in San Diego" (non-P). This is the contrapositive of the first statement, and it must be true if and only if the original statement is true. Example 2. If an animal is a dog, then it has four legs. My cat has ...

  8. Logical biconditional - Wikipedia

    en.wikipedia.org/wiki/Logical_biconditional

    Venn diagram of (true part in red) In logic and mathematics, the logical biconditional, also known as material biconditional or equivalence or biimplication or bientailment, is the logical connective used to conjoin two statements and to form the statement "if and only if" (often abbreviated as "iff " [1]), where is known as the antecedent, and the consequent.

  9. Propositional calculus - Wikipedia

    en.wikipedia.org/wiki/Propositional_calculus

    from (if p and q are true then r is true) we can prove (if q is true then r is true, if p is true) Importation (()) (()) [35] If p then (if q then r) is equivalent to if p and q then r: Idempotence of disjunction () [103]