enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Arc length - Wikipedia

    en.wikipedia.org/wiki/Arc_length

    In most cases, including even simple curves, there are no closed-form solutions for arc length and numerical integration is necessary. Numerical integration of the arc length integral is usually very efficient. For example, consider the problem of finding the length of a quarter of the unit circle by numerically integrating the arc length integral.

  3. Curve-shortening flow - Wikipedia

    en.wikipedia.org/wiki/Curve-shortening_flow

    The curve-shortening flow is an example of a geometric flow, and is the one-dimensional case of the mean curvature flow. Other names for the same process include the Euclidean shortening flow, geometric heat flow, [1] and arc length evolution. As the points of any smooth simple closed curve move in this way, the curve remains simple and smooth ...

  4. Functional (mathematics) - Wikipedia

    en.wikipedia.org/wiki/Functional_(mathematics)

    The arc length functional has as its domain the vector space of rectifiable curves – a subspace of ([,],) – and outputs a real scalar. This is an example of a non-linear functional. This is an example of a non-linear functional.

  5. Circular segment - Wikipedia

    en.wikipedia.org/wiki/Circular_segment

    The arc length, from the familiar geometry of a circle, is s = θ R {\displaystyle s={\theta }R} The area a of the circular segment is equal to the area of the circular sector minus the area of the triangular portion (using the double angle formula to get an equation in terms of θ {\displaystyle \theta } ):

  6. Whewell equation - Wikipedia

    en.wikipedia.org/wiki/Whewell_equation

    Important quantities in the Whewell equation. The Whewell equation of a plane curve is an equation that relates the tangential angle (φ) with arc length (s), where the tangential angle is the angle between the tangent to the curve at some point and the x-axis, and the arc length is the distance along the curve from a fixed point.

  7. Circular arc - Wikipedia

    en.wikipedia.org/wiki/Circular_arc

    A circular sector is shaded in green. Its curved boundary of length L is a circular arc. A circular arc is the arc of a circle between a pair of distinct points.If the two points are not directly opposite each other, one of these arcs, the minor arc, subtends an angle at the center of the circle that is less than π radians (180 degrees); and the other arc, the major arc, subtends an angle ...

  8. Calculus of variations - Wikipedia

    en.wikipedia.org/wiki/Calculus_of_Variations

    A simple example of such a problem is to find the curve of shortest length connecting two points. If there are no constraints, the solution is a straight line between the points. However, if the curve is constrained to lie on a surface in space, then the solution is less obvious, and possibly many solutions may exist.

  9. Earth section paths - Wikipedia

    en.wikipedia.org/wiki/Earth_section_paths

    The inverse problem for earth sections is: given two points, and on the surface of the reference ellipsoid, find the length, , of the short arc of a spheroid section from to and also find the departure and arrival azimuths (angle from true north) of that curve, and . The figure to the right illustrates the notation used here.