Search results
Results from the WOW.Com Content Network
dx = x2 − x1 dy = y2 − y1 m = dy/dx for x from x1 to x2 do y = m × (x − x1) + y1 plot(x, y) Here, the points have already been ordered so that >. This algorithm is unnecessarily slow because the loop involves a multiplication, which is significantly slower than addition or subtraction on most devices.
Given two different points (x 1, y 1) and (x 2, y 2), there is exactly one line that passes through them. There are several ways to write a linear equation of this line. If x 1 ≠ x 2, the slope of the line is . Thus, a point-slope form is [3]
(x 1, y 1) + (x 2, y 2) = (x 1 + x 2, y 1 + y 2). Let R + be the group of positive real numbers under multiplication. Then the direct product R + × R + is the group of all vectors in the first quadrant under the operation of component-wise multiplication (x 1, y 1) × (x 2, y 2) = (x 1 × x 2, y 1 × y 2). Let G and H be cyclic groups with two ...
In computer graphics, the Liang–Barsky algorithm (named after You-Dong Liang and Brian A. Barsky) is a line clipping algorithm. The Liang–Barsky algorithm uses the parametric equation of a line and inequalities describing the range of the clipping window to determine the intersections between the line and the clip window.
The DDA method can be implemented using floating-point or integer arithmetic. The native floating-point implementation requires one addition and one rounding operation per interpolated value (e.g. coordinate x, y, depth, color component etc.) and output result.
Shoelace scheme for determining the area of a polygon with point coordinates (,),..., (,). The shoelace formula, also known as Gauss's area formula and the surveyor's formula, [1] is a mathematical algorithm to determine the area of a simple polygon whose vertices are described by their Cartesian coordinates in the plane. [2]
Example of bilinear interpolation on the unit square with the z values 0, 1, 1 and 0.5 as indicated. Interpolated values in between represented by color. In mathematics, bilinear interpolation is a method for interpolating functions of two variables (e.g., x and y) using repeated linear interpolation.
For independent random variables X and Y, the distribution f Z of Z = X + Y equals the convolution of f X and f Y: = ()Given that f X and f Y are normal densities, = (;,) = / () = (;,) = / ()