Ad
related to: physical properties of diamond
Search results
Results from the WOW.Com Content Network
Type IIb diamonds, which account for ~0.1% of gem diamonds, are usually a steely blue or gray due to boron atoms scattered within the crystal matrix. These diamonds are also semiconductors, unlike other diamond types (see Electrical properties). Most blue-gray diamonds coming from the Argyle mine of
One such substance is diamond-like carbon—an amorphous carbonaceous material that has some physical properties similar to those of the diamond. Advertising suggests that such a coating would transfer some of these diamond-like properties to the coated stone, hence enhancing the diamond simulant.
The process of diamonds being used for drilling ornamental beads dates back to 2nd millennium BC. Archaeologists working in Yemen have excavated beads with evidences of diamond drilling from 1200 BC to 1st century AD from the site of Hajar ar Rayhani, with double diamond drilling from 1000 to 600 BC.
Most nitrogen enters the diamond lattice as a single atom (i.e. nitrogen-containing molecules dissociate before incorporation), however, molecular nitrogen incorporates into diamond as well. [16] Absorption of light and other material properties of diamond are highly dependent upon nitrogen content and aggregation state.
Lab-grown diamonds of various colors grown by the high-pressure-and-temperature technique. A synthetic diamond or laboratory-grown diamond (LGD), also called a lab-grown diamond, [1] laboratory-created, man-made, artisan-created, artificial, synthetic, or cultured diamond, is a diamond that is produced in a controlled technological process (in contrast to naturally formed diamond, which is ...
Most Ia diamonds are a mixture of IaA and IaB material; these diamonds belong to the Cape series, named after the diamond-rich region formerly known as Cape Province in South Africa, whose deposits are largely Type Ia. Type Ia diamonds often show sharp absorption bands with the main band at 415.5 nm (N3) and weaker lines at 478 nm (N2), 465 nm ...
Get AOL Mail for FREE! Manage your email like never before with travel, photo & document views. Personalize your inbox with themes & tabs. You've Got Mail!
The carbon allotropes diamond and graphite have vastly different properties; diamond is the hardest natural substance, has an adamantine lustre, and belongs to the isometric crystal family, whereas graphite is very soft, has a greasy lustre, and crystallises in the hexagonal family. This difference is accounted for by differences in bonding.
Ad
related to: physical properties of diamond