Search results
Results from the WOW.Com Content Network
The ordered pair (a, b) is different from the ordered pair (b, a), unless a = b. In contrast, the unordered pair, denoted {a, b}, equals the unordered pair {b, a}. Ordered pairs are also called 2-tuples, or sequences (sometimes, lists in a computer science context) of length 2. Ordered pairs of scalars are sometimes called 2-dimensional vectors.
A directed graph or digraph is a graph in which edges have orientations. In one restricted but very common sense of the term, [5] a directed graph is an ordered pair = (,) comprising: , a set of vertices (also called nodes or points);
The induced graph of an ordered graph is obtained by adding some edges to an ordering graph, using the method outlined below. The induced width of an ordered graph is the width of its induced graph. [2] Given an ordered graph, its induced graph is another ordered graph obtained by joining some pairs of nodes that are both parents of another node.
Given a function: from a set X (the domain) to a set Y (the codomain), the graph of the function is the set [4] = {(, ()):}, which is a subset of the Cartesian product.In the definition of a function in terms of set theory, it is common to identify a function with its graph, although, formally, a function is formed by the triple consisting of its domain, its codomain and its graph.
In formal terms, a directed graph is an ordered pair G = (V, A) where [1]. V is a set whose elements are called vertices, nodes, or points;; A is a set of ordered pairs of vertices, called arcs, directed edges (sometimes simply edges with the corresponding set named E instead of A), arrows, or directed lines.
A graph with three vertices and three edges. A graph (sometimes called an undirected graph to distinguish it from a directed graph, or a simple graph to distinguish it from a multigraph) [4] [5] is a pair G = (V, E), where V is a set whose elements are called vertices (singular: vertex), and E is a set of unordered pairs {,} of vertices, whose elements are called edges (sometimes links or lines).
A multidigraph is a directed graph which is permitted to have multiple arcs, i.e., arcs with the same source and target nodes. A multidigraph G is an ordered pair G := (V, A) with V a set of vertices or nodes, A a multiset of ordered pairs of vertices called directed edges, arcs or arrows.
A gear graph, denoted G n, is a graph obtained by inserting an extra vertex between each pair of adjacent vertices on the perimeter of a wheel graph W n. Thus, G n has 2n+1 vertices and 3n edges. [4] Gear graphs are examples of squaregraphs, and play a key role in the forbidden graph characterization of squaregraphs. [5]