enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Bose–Einstein statistics - Wikipedia

    en.wikipedia.org/wiki/BoseEinstein_statistics

    Fermi–Dirac statistics applies to fermions (particles that obey the Pauli exclusion principle), and Bose–Einstein statistics applies to bosons. As the quantum concentration depends on temperature, most systems at high temperatures obey the classical (Maxwell–Boltzmann) limit, unless they also have a very high density, as for a white dwarf .

  3. Bose–Einstein condensate - Wikipedia

    en.wikipedia.org/wiki/BoseEinstein_condensate

    Bose first sent a paper to Einstein on the quantum statistics of light quanta (now called photons), in which he derived Planck's quantum radiation law without any reference to classical physics. Einstein was impressed, translated the paper himself from English to German and submitted it for Bose to the Zeitschrift für Physik , which published ...

  4. Satyendra Nath Bose - Wikipedia

    en.wikipedia.org/wiki/Satyendra_Nath_Bose

    Satyendra Nath Bose FRS, MP [1] (/ ˈ b oʊ s /; [4] [a] 1 January 1894 – 4 February 1974) was an Indian theoretical physicist and mathematician.He is best known for his work on quantum mechanics in the early 1920s, in developing the foundation for Bose–Einstein statistics, and the theory of the Bose–Einstein condensate.

  5. Bianconi–Barabási model - Wikipedia

    en.wikipedia.org/wiki/Bianconi–Barabási_model

    As a result, at very low energies (or temperatures), a great majority of the bosons in a Bose gas can be crowded into the lowest energy state, creating a Bose–Einstein condensate. Bose and Einstein have established that the statistical properties of a Bose gas are governed by the Bose–Einstein statistics. In Bose–Einstein statistics, any ...

  6. Fermi–Dirac statistics - Wikipedia

    en.wikipedia.org/wiki/Fermi–Dirac_statistics

    For both Bose–Einstein and Maxwell–Boltzmann statistics, more than one particle can occupy the same state, unlike Fermi–Dirac statistics. Equilibrium thermal distributions for particles with integer spin (bosons, red), half integer spin (fermions, blue), and classical (spinless) particles (green).

  7. Bose gas - Wikipedia

    en.wikipedia.org/wiki/Bose_gas

    Bosons are quantum mechanical particles that follow Bose–Einstein statistics, or equivalently, that possess integer spin.These particles can be classified as elementary: these are the Higgs boson, the photon, the gluon, the W/Z and the hypothetical graviton; or composite like the atom of hydrogen, the atom of 16 O, the nucleus of deuterium, mesons etc. Additionally, some quasiparticles in ...

  8. Photon statistics - Wikipedia

    en.wikipedia.org/wiki/Photon_statistics

    Photon statistics is the theoretical and experimental study of the statistical distributions produced in ... Comparison of the Poisson and Bose-Einstein distributions

  9. Particle statistics - Wikipedia

    en.wikipedia.org/wiki/Particle_statistics

    Particle statistics is a particular description of multiple particles in statistical mechanics.A key prerequisite concept is that of a statistical ensemble (an idealization comprising the state space of possible states of a system, each labeled with a probability) that emphasizes properties of a large system as a whole at the expense of knowledge about parameters of separate particles.