enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Bose–Einstein correlations - Wikipedia

    en.wikipedia.org/wiki/BoseEinstein_correlations

    The most general theoretical formalism for Bose–Einstein correlations in subnuclear physics is the quantum statistical approach, [10] [11] based on the classical current [12] and coherent state, [13] [14] formalism: it includes quantum coherence, correlation lengths and correlation times.

  3. Bose–Einstein statistics - Wikipedia

    en.wikipedia.org/wiki/BoseEinstein_statistics

    Bose's "error" leads to what is now called Bose–Einstein statistics. Bose and Einstein extended the idea to atoms and this led to the prediction of the existence of phenomena which became known as Bose–Einstein condensate, a dense collection of bosons (which are particles with integer spin, named after Bose), which was demonstrated to exist ...

  4. Coherent state - Wikipedia

    en.wikipedia.org/wiki/Coherent_state

    A second-order correlation coefficient of 1 means that photons in coherent states are uncorrelated. Hanbury Brown and Twiss studied the correlation behavior of photons emitted from a thermal, incoherent source described by Bose–Einstein statistics. The variance of the Bose–Einstein distribution is

  5. Bose gas - Wikipedia

    en.wikipedia.org/wiki/Bose_gas

    The thermodynamics of an ideal Bose gas is best calculated using the grand canonical ensemble.The grand potential for a Bose gas is given by: = ⁡ = ⁡ (). where each term in the sum corresponds to a particular single-particle energy level ε i; g i is the number of states with energy ε i; z is the absolute activity (or "fugacity"), which may also be expressed in terms of the chemical ...

  6. Lieb–Liniger model - Wikipedia

    en.wikipedia.org/wiki/Lieb–Liniger_Model

    In physics, the Lieb–Liniger model describes a gas of particles moving in one dimension and satisfying Bose–Einstein statistics. More specifically, it describes a one dimensional Bose gas with Dirac delta interactions. It is named after Elliott H. Lieb and Werner Liniger who introduced the model in 1963. [1]

  7. Exchange interaction - Wikipedia

    en.wikipedia.org/wiki/Exchange_interaction

    For bosons, the exchange symmetry makes them bunch together, and the exchange interaction takes the form of an effective attraction that causes identical particles to be found closer together, as in Bose–Einstein condensation. Exchange interaction effects were discovered independently by physicists Werner Heisenberg and Paul Dirac in 1926. [4 ...

  8. Bose–Einstein condensate - Wikipedia

    en.wikipedia.org/wiki/BoseEinstein_condensate

    The same team demonstrated in 2017 the first creation of a Bose–Einstein condensate in space [70] and it is also the subject of two upcoming experiments on the International Space Station. [71] [72] Researchers in the new field of atomtronics use the properties of Bose–Einstein condensates in the emerging quantum technology of matter-wave ...

  9. Spin–statistics theorem - Wikipedia

    en.wikipedia.org/wiki/Spin–statistics_theorem

    All known particles obey either Fermi–Dirac statistics or Bose–Einstein statistics. A particle's intrinsic spin always predicts the statistics of a collection of such particles and conversely: [3] integral-spin particles are bosons with Bose–Einstein statistics, half-integral-spin particles are fermions with Fermi–Dirac statistics.