Search results
Results from the WOW.Com Content Network
In physics, absorption cross-section is a measure of the probability of an absorption process. More generally, the term cross-section is used in physics to quantify the probability of a certain particle-particle interaction, e.g., scattering , electromagnetic absorption , etc. (Note that light in this context is described as consisting of ...
absorption cross section and scattering cross section are both quantitatively related to the attenuation coefficient; see absorption cross section and scattering cross section for details; The attenuation coefficient is also sometimes called opacity ; see opacity (optics) .
In physics, the cross section is a measure of the probability that a specific process will take place in a collision of two particles. For example, the Rutherford cross-section is a measure of probability that an alpha particle will be deflected by a given angle during an interaction with an atomic nucleus.
μ = Linear absorption coefficient; x = Thickness of substance ... Differential cross-section (for identical particles in a coulomb potential, in centre of mass frame
A barn (symbol: b) is a metric unit of area equal to 10 −28 m 2 (100 fm 2).Originally used in nuclear physics for expressing the cross sectional area of nuclei and nuclear reactions, today it is also used in all fields of high-energy physics to express the cross sections of any scattering process, and is best understood as a measure of the probability of interaction between small particles.
Nuclear cross sections are used in determining the nuclear reaction rate, and are governed by the reaction rate equation for a particular set of particles (usually viewed as a "beam and target" thought experiment where one particle or nucleus is the "target", which is typically at rest, and the other is treated as a "beam", which is a projectile with a given energy).
The oscillator strength is defined by the following relation to the cross section for absorption: [19] = =, where e {\displaystyle e} is the electron charge, m e {\displaystyle m_{e}} is the electron mass, and ϕ ν {\displaystyle \phi _{\nu }} and ϕ ω {\displaystyle \phi _{\omega }} are normalized distribution functions in frequency and ...
where ℓ is the mean free path, n is the number of target particles per unit volume, and σ is the effective cross-sectional area for collision. The area of the slab is L 2, and its volume is L 2 dx. The typical number of stopping atoms in the slab is the concentration n times the volume, i.e., n L 2 dx. The probability that a beam particle ...