Search results
Results from the WOW.Com Content Network
In computer science and graph theory, the maximum weight matching problem is the problem of finding, in a weighted graph, a matching in which the sum of weights is maximized. A special case of it is the assignment problem , in which the input is restricted to be a bipartite graph , and the matching constrained to be have cardinality that of the ...
The following figure shows examples of maximal matchings (red) in three graphs. A maximum matching (also known as maximum-cardinality matching [2]) is a matching that contains the largest possible number of edges. There may be many maximum matchings. The matching number of a graph G is the size of a maximum matching. Every maximum matching is ...
The matching problem can be generalized by assigning weights to edges in G and asking for a set M that produces a matching of maximum (minimum) total weight: this is the maximum weight matching problem. This problem can be solved by a combinatorial algorithm that uses the unweighted Edmonds's algorithm as a subroutine. [6]
When phrased as a graph theory problem, the assignment problem can be extended from bipartite graphs to arbitrary graphs. The corresponding problem, of finding a matching in a weighted graph where the sum of weights is maximized, is called the maximum weight matching problem.
The problem of finding a matching with maximum weight in a weighted graph is called the maximum weight matching problem, and its restriction to bipartite graphs is called the assignment problem. If each vertex can be matched to several vertices at once, then this is a generalized assignment problem .
In any edge-weighted bipartite graph, the maximum w-weight of a matching equals the smallest number of vertices in a w-vertex-cover. The maximum w-weight of a fractional matching is given by the LP: [18] Maximize w · x. Subject to: x ≥ 0 E _____ A G · x ≤ 1 V.
The original form of the auction algorithm is an iterative method to find the optimal prices and an assignment that maximizes the net benefit in a bipartite graph, the maximum weight matching problem (MWM). [2] [3] This algorithm was first proposed by Dimitri Bertsekas in 1979.
Every perfect matching is a maximum-cardinality matching, but the opposite is not true. For example, consider the following graphs: [1] In graph (b) there is a perfect matching (of size 3) since all 6 vertices are matched; in graphs (a) and (c) there is a maximum-cardinality matching (of size 2) which is not perfect, since some vertices are ...