enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Modeling and simulation - Wikipedia

    en.wikipedia.org/wiki/Modeling_and_simulation

    Modeling and simulation (M&S) is the use of models (e.g., physical, mathematical, behavioral, or logical representation of a system, entity, phenomenon, or process) as a basis for simulations to develop data utilized for managerial or technical decision making.

  3. Monte Carlo method - Wikipedia

    en.wikipedia.org/wiki/Monte_Carlo_method

    Here are some examples: Simulation: Drawing one pseudo-random uniform variable from the interval [0,1] can be used to simulate the tossing of a coin: If the value is less than or equal to 0.50 designate the outcome as heads, but if the value is greater than 0.50 designate the outcome as tails. This is a simulation, but not a Monte Carlo simulation.

  4. Simulation-based optimization - Wikipedia

    en.wikipedia.org/wiki/Simulation-based_optimization

    Simulation-based optimization (also known as simply simulation optimization) integrates optimization techniques into simulation modeling and analysis. Because of the complexity of the simulation, the objective function may become difficult and expensive to evaluate. Usually, the underlying simulation model is stochastic, so that the objective ...

  5. Simulation - Wikipedia

    en.wikipedia.org/wiki/Simulation

    Hybrid simulation (or combined simulation) corresponds to a mix between continuous and discrete event simulation and results in integrating numerically the differential equations between two sequential events to reduce the number of discontinuities. [10] A stand-alone simulation is a simulation running on a single workstation by itself.

  6. Regression analysis - Wikipedia

    en.wikipedia.org/wiki/Regression_analysis

    In statistical modeling, regression analysis is a set of statistical processes for estimating the relationships between a dependent variable (often called the outcome or response variable, or a label in machine learning parlance) and one or more error-free independent variables (often called regressors, predictors, covariates, explanatory ...

  7. Statistical model - Wikipedia

    en.wikipedia.org/wiki/Statistical_model

    As another example, suppose that the data consists of points (x, y) that we assume are distributed according to a straight line with i.i.d. Gaussian residuals (with zero mean): this leads to the same statistical model as was used in the example with children's heights. The dimension of the statistical model is 3: the intercept of the line, the ...

  8. Simulation modeling - Wikipedia

    en.wikipedia.org/wiki/Simulation_modeling

    Simulation modeling is the process of creating and analyzing a digital prototype of a physical model to predict its performance in the real world. Simulation modeling is used to help designers and engineers understand whether, under what conditions, and in which ways a part could fail and what loads it can withstand.

  9. Computational statistics - Wikipedia

    en.wikipedia.org/wiki/Computational_statistics

    Though computational statistics is widely used today, it actually has a relatively short history of acceptance in the statistics community. For the most part, the founders of the field of statistics relied on mathematics and asymptotic approximations in the development of computational statistical methodology.