enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Resampling (statistics) - Wikipedia

    en.wikipedia.org/wiki/Resampling_(statistics)

    The best example of the plug-in principle, the bootstrapping method. Bootstrapping is a statistical method for estimating the sampling distribution of an estimator by sampling with replacement from the original sample, most often with the purpose of deriving robust estimates of standard errors and confidence intervals of a population parameter like a mean, median, proportion, odds ratio ...

  3. Bootstrapping (statistics) - Wikipedia

    en.wikipedia.org/wiki/Bootstrapping_(statistics)

    The bootstrap sample is taken from the original by using sampling with replacement (e.g. we might 'resample' 5 times from [1,2,3,4,5] and get [2,5,4,4,1]), so, assuming N is sufficiently large, for all practical purposes there is virtually zero probability that it will be identical to the original "real" sample. This process is repeated a large ...

  4. Out-of-bag error - Wikipedia

    en.wikipedia.org/wiki/Out-of-bag_error

    One set, the bootstrap sample, is the data chosen to be "in-the-bag" by sampling with replacement. The out-of-bag set is all data not chosen in the sampling process. When this process is repeated, such as when building a random forest, many bootstrap samples and OOB sets are created. The OOB sets can be aggregated into one dataset, but each ...

  5. Bootstrap aggregating - Wikipedia

    en.wikipedia.org/wiki/Bootstrap_aggregating

    Rather than building a single smoother for the complete dataset, 100 bootstrap samples were drawn. Each sample is composed of a random subset of the original data and maintains a semblance of the master set's distribution and variability. For each bootstrap sample, a LOESS smoother was fit.

  6. Cross-validation (statistics) - Wikipedia

    en.wikipedia.org/wiki/Cross-validation_(statistics)

    Diagram of k-fold cross-validation. Cross-validation, [2] [3] [4] sometimes called rotation estimation [5] [6] [7] or out-of-sample testing, is any of various similar model validation techniques for assessing how the results of a statistical analysis will generalize to an independent data set.

  7. Training, validation, and test data sets - Wikipedia

    en.wikipedia.org/wiki/Training,_validation,_and...

    A training data set is a data set of examples used during the learning process and is used to fit the parameters (e.g., weights) of, for example, a classifier. [9] [10]For classification tasks, a supervised learning algorithm looks at the training data set to determine, or learn, the optimal combinations of variables that will generate a good predictive model. [11]

  8. Informal methods of validation and verification - Wikipedia

    en.wikipedia.org/wiki/Informal_methods_of...

    Inspection is a verification method that is used to compare how correctly the conceptual model matches the executable model. Teams of experts, developers, and testers will thoroughly scan the content (algorithms, programming code, documents, equations) in the original conceptual model and compare with the appropriate counterpart to verify how closely the executable model matches. [1]

  9. Likelihood-ratio test - Wikipedia

    en.wikipedia.org/wiki/Likelihood-ratio_test

    The finite-sample distributions of likelihood-ratio statistics are generally unknown. [10] The likelihood-ratio test requires that the models be nested – i.e. the more complex model can be transformed into the simpler model by imposing constraints on the former's parameters.