enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Closure (mathematics) - Wikipedia

    en.wikipedia.org/wiki/Closure_(mathematics)

    In mathematics, a subset of a given set is closed under an operation of the larger set if performing that operation on members of the subset always produces a member of that subset. For example, the natural numbers are closed under addition, but not under subtraction: 1 − 2 is not a natural number, although both 1 and 2 are.

  3. Closed set - Wikipedia

    en.wikipedia.org/wiki/Closed_set

    In geometry, topology, and related branches of mathematics, a closed set is a set whose complement is an open set. [1] [2] In a topological space, a closed set can be defined as a set which contains all its limit points. In a complete metric space, a closed set is a set which is closed under the limit operation.

  4. Closure (topology) - Wikipedia

    en.wikipedia.org/wiki/Closure_(topology)

    The definition of a point of closure of a set is closely related to the definition of a limit point of a set.The difference between the two definitions is subtle but important – namely, in the definition of a limit point of a set , every neighbourhood of must contain a point of other than itself, i.e., each neighbourhood of obviously has but it also must have a point of that is not equal to ...

  5. Deductive closure - Wikipedia

    en.wikipedia.org/wiki/Deductive_closure

    A theory may be referred to as a deductively closed theory to emphasize it is defined as a deductively closed set. [1] Deductive closure is a special case of the more general mathematical concept of closure — in particular, the deductive closure of ⁠ ⁠ is exactly the closure of ⁠ ⁠ with respect to the operation of logical consequence

  6. Closure operator - Wikipedia

    en.wikipedia.org/wiki/Closure_operator

    Convex hull (red) of a polygon (yellow). The usual set closure from topology is a closure operator. Other examples include the linear span of a subset of a vector space, the convex hull or affine hull of a subset of a vector space or the lower semicontinuous hull ¯ of a function : {}, where is e.g. a normed space, defined implicitly ⁡ (¯) = ⁡ ¯, where ⁡ is the epigraph of a function .

  7. Multiplicatively closed set - Wikipedia

    en.wikipedia.org/wiki/Multiplicatively_closed_set

    Examples of multiplicative sets include: the set-theoretic complement of a prime ideal in a commutative ring; the set {1, x, x 2, x 3, ...}, where x is an element of a ring; the set of units of a ring; the set of non-zero-divisors in a ring; 1 + I for an ideal I; the Jordan–Pólya numbers, the multiplicative closure of the factorials.

  8. List of general topology topics - Wikipedia

    en.wikipedia.org/wiki/List_of_general_topology...

    Open set, closed set. Clopen set; Closure (topology) Boundary (topology) Dense (topology) G-delta set, F-sigma set; closeness (mathematics) neighbourhood (mathematics) Continuity (topology) Homeomorphism; Local homeomorphism; Open and closed maps; Germ (mathematics) Base (topology), subbase; Open cover; Covering space; Atlas (topology)

  9. Sentence (mathematical logic) - Wikipedia

    en.wikipedia.org/wiki/Sentence_(mathematical_logic)

    A set of sentences is called a theory; thus, individual sentences may be called theorems. To properly evaluate the truth (or falsehood) of a sentence, one must make reference to an interpretation of the theory. For first-order theories, interpretations are commonly called structures. Given a structure or interpretation, a sentence will have a ...