Search results
Results from the WOW.Com Content Network
Torsion of a square section bar Example of torsion mechanics. In the field of solid mechanics, torsion is the twisting of an object due to an applied torque [1] [2].Torsion could be defined as strain [3] [4] or angular deformation [5], and is measured by the angle a chosen section is rotated from its equilibrium position [6].
In mechanics, strain is defined as relative deformation, compared to a reference position configuration. Different equivalent choices may be made for the expression of a strain field depending on whether it is defined with respect to the initial or the final configuration of the body and on whether the metric tensor or its dual is considered.
a torsion angle between 90° and 150° or −90° and −150° is called anticlinal (ac) a torsion angle between ±150° and 180° is called antiperiplanar (ap), also called anti-or trans-conformation; Torsional strain or "Pitzer strain" refers to resistance to twisting about a bond.
Thus, a point defining true stress–strain curve is displaced upwards and to the left to define the equivalent engineering stress–strain curve. The difference between the true and engineering stresses and strains will increase with plastic deformation. At low strains (such as elastic deformation), the differences between the two is ...
The definition of strain rate was first introduced in 1867 by American metallurgist Jade LeCocq, who defined it as "the rate at which strain occurs. It is the time rate of change of strain." In physics the strain rate is generally defined as the derivative of the strain with respect to time. Its precise definition depends on how strain is measured.
Torsional strain may refer to: Deformation (mechanics) Strain (chemistry)#Torsional strain This page was last edited on 30 December 2019, at 16:50 (UTC). Text is ...
A two-dimensional flow that, at the highlighted point, has only a strain rate component, with no mean velocity or rotational component. In continuum mechanics, the strain-rate tensor or rate-of-strain tensor is a physical quantity that describes the rate of change of the strain (i.e., the relative deformation) of a material in the neighborhood of a certain point, at a certain moment of time.
The strain energy of cyclopropane and cyclobutane are 27.5 and 26.3 kcal mol −1, respectively. [1] Cyclopentane experiences much less strain, mainly due to torsional strain from eclipsed hydrogens: its preferred conformations interconvert by a process called pseudorotation. [4]: 14 Ring strain can be considerably higher in bicyclic systems.