Search results
Results from the WOW.Com Content Network
The Reynolds and Womersley Numbers are also used to calculate the thicknesses of the boundary layers that can form from the fluid flow’s viscous effects. The Reynolds number is used to calculate the convective inertial boundary layer thickness that can form, and the Womersley number is used to calculate the transient inertial boundary thickness that can form.
For kinematic viscosity, the SI unit is m^2/s. In engineering, the unit is usually Stoke or centiStoke, with 1 Stoke = 0.0001 m^2/s, and 1 centiStoke = 0.01 Stoke. For liquid, the dynamic viscosity is usually in the range of 0.001 to 1 Pascal-second, or 1 to 1000 centiPoise. The density is usually on the order of 1000 kg/m^3, i.e. that of water.
The poise is often used with the metric prefix centi-because the viscosity of water at 20 °C (standard conditions for temperature and pressure) is almost exactly 1 centipoise. [3] A centipoise is one hundredth of a poise, or one millipascal-second (mPa⋅s) in SI units (1 cP = 10 −3 Pa⋅s = 1 mPa⋅s). [4] The CGS symbol for the centipoise ...
A is the pipe's cross-sectional area (A = πD 2 / 4 ) (m 2), u is the mean velocity of the fluid (m/s), μ (mu) is the dynamic viscosity of the fluid (Pa·s = N·s/m 2 = kg/(m·s)), ν (nu) is the kinematic viscosity (ν = μ / ρ ) (m 2 /s), ρ (rho) is the density of the fluid (kg/m 3), W is the mass flowrate of the fluid (kg/s).
is the frictional force – known as Stokes' drag – acting on the interface between the fluid and the particle (newtons, kg m s −2); μ (some authors use the symbol η) is the dynamic viscosity (Pascal-seconds, kg m −1 s −1); R is the radius of the spherical object (meters);
Viscosity is a measure of a fluid's rate-dependent resistance to a change in shape or to movement of its neighboring portions relative to one another. [1] For liquids, it corresponds to the informal concept of thickness; for example, syrup has a higher viscosity than water. [2]
The dilute gas viscosity contribution to the total viscosity of a fluid will only be important when predicting the viscosity of vapors at low pressures or the viscosity of dense fluids at high temperatures. The viscosity model for dilute gas, that is shown above, is widely used throughout the industry and applied science communities.
μ is the dynamic viscosity of the fluid (Pa·s = N·s/m 2 = kg/(m·s)); Q is the volumetric flow rate, used here to measure flow instead of mean velocity according to Q = π / 4 D c 2 <v> (m 3 /s). Note that this laminar form of Darcy–Weisbach is equivalent to the Hagen–Poiseuille equation, which is analytically derived from the ...