Search results
Results from the WOW.Com Content Network
The shear modulus is one of several quantities for measuring the stiffness of materials. All of them arise in the generalized Hooke's law: . Young's modulus E describes the material's strain response to uniaxial stress in the direction of this stress (like pulling on the ends of a wire or putting a weight on top of a column, with the wire getting longer and the column losing height),
Shear modulus: Ratio of shear stress to shear strain (MPa) Shear strength: Maximum shear stress a material can withstand; Slip: A tendency of a material's particles to undergo plastic deformation due to a dislocation motion within the material. Common in Crystals. Specific modulus: Modulus per unit volume (MPa/m^3)
The elastic modulus of concrete can vary widely and depends on the concrete mix, age, and quality, as well as on the type and duration of loading applied to it. It is usually taken as approximately 25 GPa for long-term loads once it has attained its full strength (usually considered to be at 28 days after casting).
A36 steel has a Poisson's ratio of 0.26 and a shear modulus of 11,500 ksi (79.3 GPa). [ 7 ] A36 steel in plates, bars, and shapes with a thickness of less than 8 inches (203 millimeters) has a minimum yield strength of 36 ksi (250 MPa ) and ultimate tensile strength of 58–80 ksi (400–550 MPa).
Volume, modulus of elasticity, distribution of forces, and yield strength affect the impact strength of a material. In order for a material or object to have a high impact strength, the stresses must be distributed evenly throughout the object. It also must have a large volume with a low modulus of elasticity and a high material yield strength. [7]
The modulus of elasticity of concrete is relatively constant at low stress levels but starts decreasing at higher stress levels as matrix cracking develops. The elastic modulus of the hardened paste may be in the order of 10-30 GPa and aggregates about 45 to 85 GPa. The concrete composite is then in the range of 30 to 50 GPa.
In engineering, shear strength is the strength of a material or component against the type of yield or structural failure when the material or component fails in shear. A shear load is a force that tends to produce a sliding failure on a material along a plane that is parallel to the direction of the force.
Shear and Bending moment diagram for a simply supported beam with a concentrated load at mid-span. Shear force and bending moment diagrams are analytical tools used in conjunction with structural analysis to help perform structural design by determining the value of shear forces and bending moments at a given point of a structural element such as a beam.