Search results
Results from the WOW.Com Content Network
Failures or omissions in data validation can lead to data corruption or a security vulnerability. [4] Data validation checks that data are fit for purpose, [ 5 ] valid, sensible, reasonable and secure before they are processed.
An example of a data-integrity mechanism is the parent-and-child relationship of related records. If a parent record owns one or more related child records all of the referential integrity processes are handled by the database itself, which automatically ensures the accuracy and integrity of the data so that no child record can exist without a parent (also called being orphaned) and that no ...
This approach allows improved data integrity protection covering the entire data paths, which is usually known as end-to-end data protection, compared with other data integrity approaches that do not span different layers in the storage stack and allow data corruption to occur while the data passes boundaries between the different layers. [19]
A training data set is a data set of examples used during the learning process and is used to fit the parameters (e.g., weights) of, for example, a classifier. [9] [10]For classification tasks, a supervised learning algorithm looks at the training data set to determine, or learn, the optimal combinations of variables that will generate a good predictive model. [11]
Data reconciliation is a technique that targets at correcting measurement errors that are due to measurement noise, i.e. random errors.From a statistical point of view the main assumption is that no systematic errors exist in the set of measurements, since they may bias the reconciliation results and reduce the robustness of the reconciliation.
System-level soft errors occur when the data being processed is hit with a noise phenomenon, typically when the data is on a data bus. The computer tries to interpret the noise as a data bit, which can cause errors in addressing or processing program code. The bad data bit can even be saved in memory and cause problems at a later time.
Verification and validation of computer simulation models is conducted during the development of a simulation model with the ultimate goal of producing an accurate and credible model. [ 1 ] [ 2 ] "Simulation models are increasingly being used to solve problems and to aid in decision-making.
Data degradation is the gradual corruption of computer data due to an accumulation of non-critical failures in a data storage device. It is also referred to as data decay, data rot or bit rot. [1] This results in a decline in data quality over time, even when the data is not being utilized.