Search results
Results from the WOW.Com Content Network
Let X be a Riemann surface.Then the intersection number of two closed curves on X has a simple definition in terms of an integral. For every closed curve c on X (i.e., smooth function :), we can associate a differential form of compact support, the Poincaré dual of c, with the property that integrals along c can be calculated by integrals over X:
Assume that we want to find intersection of two infinite lines in 2-dimensional space, defined as a 1 x + b 1 y + c 1 = 0 and a 2 x + b 2 y + c 2 = 0. We can represent these two lines in line coordinates as U 1 = (a 1, b 1, c 1) and U 2 = (a 2, b 2, c 2). The intersection P′ of two lines is then simply given by [4]
If the point is on the inside of the polygon then it will intersect the edge an odd number of times. The status of a point on the edge of the polygon depends on the details of the ray intersection algorithm. This algorithm is sometimes also known as the crossing number algorithm or the even–odd rule algorithm, and was known as early as 1962. [3]
Python sets are very much like mathematical sets, and support operations like set intersection and union. Python also features a frozenset class for immutable sets, see Collection types. Dictionaries (class dict) are mutable mappings tying keys and corresponding values. Python has special syntax to create dictionaries ({key: value})
The intersection points are: (−0.8587, 0.7374, −0.6332), (0.8587, 0.7374, 0.6332). A line–sphere intersection is a simple special case. Like the case of a line and a plane, the intersection of a curve and a surface in general position consists of discrete points, but a curve may be partly or totally contained in a surface.
An alternative definition of the Minkowski difference is sometimes used for computing intersection of convex shapes. [3] This is not equivalent to the previous definition, and is not an inverse of the sum operation. Instead it replaces the vector addition of the Minkowski sum with a vector subtraction. If the two convex shapes intersect, the ...
A linear equation in line coordinates has the form al + bm + c = 0, where a, b and c are constants. Suppose (l, m) is a line that satisfies this equation.If c is not 0 then lx + my + 1 = 0, where x = a/c and y = b/c, so every line satisfying the original equation passes through the point (x, y).
In mathematics, the Zassenhaus algorithm [1] is a method to calculate a basis for the intersection and sum of two subspaces of a vector space. It is named after Hans Zassenhaus, but no publication of this algorithm by him is known. [2] It is used in computer algebra systems. [3]