Search results
Results from the WOW.Com Content Network
Knowledge representation and reasoning (KRR, KR&R, or KR²) is a field of artificial intelligence (AI) dedicated to representing information about the world in a form that a computer system can use to solve complex tasks, such as diagnosing a medical condition or having a natural-language dialog.
In artificial intelligence, symbolic artificial intelligence (also known as classical artificial intelligence or logic-based artificial intelligence) [1] [2] is the term for the collection of all methods in artificial intelligence research that are based on high-level symbolic (human-readable) representations of problems, logic and search. [3]
A frame language is a technology used for knowledge representation in artificial intelligence. They are similar to class hierarchies in object-oriented languages although their fundamental design goals are different. Frames are focused on explicit and intuitive representation of knowledge whereas objects focus on encapsulation and information ...
Watson also has the capacity for knowledge representation and reasoning, which is essentially learning by context and employing language flexibility, like the intellectual flexibility needed in ...
The vector representation of the entities and relations can be used for different machine learning applications. In representation learning, knowledge graph embedding (KGE), also referred to as knowledge representation learning (KRL), or multi-relation learning, [1] is a machine learning task of learning a low-dimensional representation of a ...
In knowledge representation and reasoning, a knowledge graph is a knowledge base that uses a graph-structured data model or topology to represent and operate on data. Knowledge graphs are often used to store interlinked descriptions of entities – objects, events, situations or abstract concepts – while also encoding the free-form semantics ...
Neuro-symbolic AI is a type of artificial intelligence that integrates neural and symbolic AI architectures to address the weaknesses of each, providing a robust AI capable of reasoning, learning, and cognitive modeling.
Class (knowledge representation) Closed-world assumption; Cognitive categorization; Cognitive map; Colon classification; Completeness (knowledge bases) Composite Capability/Preference Profiles; Composite portrait; Computer Science Ontology; Concept map; Concepticon; Conceptual graph; Conceptualization (information science) Consistency ...