Search results
Results from the WOW.Com Content Network
The urea cycle converts highly toxic ammonia to urea for excretion. [1] This cycle was the first metabolic cycle to be discovered by Hans Krebs and Kurt Henseleit in 1932, [2] [3] [4] five years before the discovery of the TCA cycle. The urea cycle was described in more detail later on by Ratner and Cohen.
The structure of the molecule of urea is O=C(−NH 2) 2.The urea molecule is planar when in a solid crystal because of sp 2 hybridization of the N orbitals. [8] [9] It is non-planar with C 2 symmetry when in the gas phase [10] or in aqueous solution, [9] with C–N–H and H–N–H bond angles that are intermediate between the trigonal planar angle of 120° and the tetrahedral angle of 109.5°.
Selective catalytic reduction (SCR) means converting nitrogen oxides, also referred to as NO x with the aid of a catalyst into diatomic nitrogen (N 2), and water (H 2 O). A reductant, typically anhydrous ammonia (NH 3), aqueous ammonia (NH 4 OH), or a urea (CO(NH 2) 2) solution, is added to a stream of flue or exhaust gas and is reacted onto a ...
The Wöhler synthesis is the conversion of ammonium cyanate into urea. This chemical reaction was described in 1828 by Friedrich Wöhler. [1] It is often cited as the starting point of modern organic chemistry. Although the Wöhler reaction concerns the conversion of ammonium cyanate, this salt appears only as an
Urea plant using ammonium carbamate briquettes, Fixed Nitrogen Research Laboratory, ca. 1930 Carl Bosch, 1927. The Bosch–Meiser process is an industrial process, which was patented in 1922 [1] and named after its discoverers, the German chemists Carl Bosch and Wilhelm Meiser [2] for the large-scale manufacturing of urea, a valuable nitrogenous chemical.
Ammonium carbamate is an intermediate in the industrial production of urea. A typical industrial plant that makes urea can produce up to 4000 tons a day. [15] in this reactor and can then be dehydrated to urea according to the following equation: [14] [NH 2 CO 2][NH 4] → (NH 2) 2 CO + H 2 O
The liver converts ammonia to urea through a series of reactions known as the urea cycle. Liver dysfunction, such as that seen in cirrhosis, may lead to elevated amounts of ammonia in the blood (hyperammonemia). Likewise, defects in the enzymes responsible for the urea cycle, such as ornithine transcarbamylase, lead to hyperammonemia.
The k cat /K m of urease in the processing of urea is 10 14 times greater than the rate of the uncatalyzed elimination reaction of urea. [5] There are many reasons for this observation in nature. The proximity of urea to active groups in the active site along with the correct orientation of urea allow hydrolysis to occur rapidly.