Search results
Results from the WOW.Com Content Network
Hindu scholars have been using factorial formulas since at least 1150, when Bhāskara II mentioned factorials in his work Līlāvatī, in connection with a problem of how many ways Vishnu could hold his four characteristic objects (a conch shell, discus, mace, and lotus flower) in his four hands, and a similar problem for a ten-handed god. [4]
A more efficient method to compute individual binomial coefficients is given by the formula = _! = () (()) () = = +, where the numerator of the first fraction, _, is a falling factorial. This formula is easiest to understand for the combinatorial interpretation of binomial coefficients.
An infinite series of any rational function of can be reduced to a finite series of polygamma functions, by use of partial fraction decomposition, [8] as explained here. This fact can also be applied to finite series of rational functions, allowing the result to be computed in constant time even when the series contains a large number of terms.
The rising factorial is also integral to the definition of the hypergeometric function: The hypergeometric function is defined for | | < by the power series (,;;) = = () ()! provided that ,,, …. Note, however, that the hypergeometric function literature typically uses the notation ( a ) n {\displaystyle (a)_{n}} for rising factorials.
"Stirling_formula", Encyclopedia of Mathematics, EMS Press, 2001 [1994] Peter Luschny, Approximation formulas for the factorial function n! Weisstein, Eric W., "Stirling's Approximation", MathWorld; Stirling's approximation at PlanetMath
In mathematics, a combination is a selection of items from a set that has distinct members, such that the order of selection does not matter (unlike permutations).For example, given three fruits, say an apple, an orange and a pear, there are three combinations of two that can be drawn from this set: an apple and a pear; an apple and an orange; or a pear and an orange.
(n factorial) is the number of n-permutations; !n (n subfactorial) is the number of derangements – n-permutations where all of the n elements change their initial places. In combinatorial mathematics, a derangement is a permutation of the elements of a set in which no element appears in its original position.
In mathematics, Legendre's formula gives an expression for the exponent of the largest power of a prime p that divides the factorial n!. It is named after Adrien-Marie Legendre . It is also sometimes known as de Polignac's formula , after Alphonse de Polignac .