enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Factorial - Wikipedia

    en.wikipedia.org/wiki/Factorial

    The earliest uses of the factorial function involve counting permutations: there are ! different ways of arranging distinct objects into a sequence. [26] Factorials appear more broadly in many formulas in combinatorics, to account for different orderings of objects.

  3. Factorial number system - Wikipedia

    en.wikipedia.org/wiki/Factorial_number_system

    In combinatorics, the factorial number system, also called factoradic, is a mixed radix numeral system adapted to numbering permutations. It is also called factorial base , although factorials do not function as base , but as place value of digits.

  4. List of permutation topics - Wikipedia

    en.wikipedia.org/wiki/List_of_permutation_topics

    Enumerations of specific permutation classes; Factorial. Falling factorial; Permutation matrix. Generalized permutation matrix; Inversion (discrete mathematics) Major index; Ménage problem; Permutation graph; Permutation pattern; Permutation polynomial; Permutohedron; Rencontres numbers; Robinson–Schensted correspondence; Sum of permutations ...

  5. Permutation - Wikipedia

    en.wikipedia.org/wiki/Permutation

    A different rule for multiplying permutations comes from writing the argument to the left of the function, so that the leftmost permutation acts first. [ 30 ] [ 31 ] [ 32 ] In this notation, the permutation is often written as an exponent, so σ acting on x is written x σ ; then the product is defined by x σ ⋅ τ = ( x σ ) τ ...

  6. Stirling's approximation - Wikipedia

    en.wikipedia.org/wiki/Stirling's_approximation

    However, the gamma function, unlike the factorial, is more broadly defined for all complex numbers other than non-positive integers; nevertheless, Stirling's formula may still be applied.

  7. Stirling numbers of the first kind - Wikipedia

    en.wikipedia.org/wiki/Stirling_numbers_of_the...

    We prove the recurrence relation using the definition of Stirling numbers in terms of permutations with a given number of cycles (or equivalently, orbits). Consider forming a permutation of + objects from a permutation of objects by adding a distinguished object. There are exactly two ways in which this can be accomplished.

  8. Heap's algorithm - Wikipedia

    en.wikipedia.org/wiki/Heap's_algorithm

    In a 1977 review of permutation-generating algorithms, Robert Sedgewick concluded that it was at that time the most effective algorithm for generating permutations by computer. [2] The sequence of permutations of n objects generated by Heap's algorithm is the beginning of the sequence of permutations of n+1 objects.

  9. Enumerative combinatorics - Wikipedia

    en.wikipedia.org/wiki/Enumerative_combinatorics

    Two examples of this type of problem are counting combinations and counting permutations. More generally, given an infinite collection of finite sets S i indexed by the natural numbers, enumerative combinatorics seeks to describe a counting function which counts the number of objects in S n for each n.