enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Effects of high altitude on humans - Wikipedia

    en.wikipedia.org/wiki/Effects_of_high_altitude...

    Room air at altitude can be enriched with oxygen without introducing an unacceptable fire hazard. At an altitude of 8000 m the equivalent altitude in terms of oxygen partial pressure can be reduced to below 4000 m without increasing the fire hazard beyond that of normal sea level atmospheric air.

  3. Armstrong limit - Wikipedia

    en.wikipedia.org/wiki/Armstrong_limit

    At 11,900 m (39,000 ft), breathing pure oxygen through an unsealed face mask, one is breathing the same partial pressure of oxygen as one would experience with regular air at around 3,600 m (11,800 ft) above sea level [citation needed]. At higher altitudes, oxygen must be delivered through a sealed mask with increased pressure, to maintain a ...

  4. Death zone - Wikipedia

    en.wikipedia.org/wiki/Death_zone

    In mountaineering, the death zone refers to altitudes above which the pressure of oxygen is insufficient to sustain human life for an extended time span. This point is generally agreed as 8,000 m (26,000 ft), where atmospheric pressure is less than 356 millibars (10.5 inHg; 5.16 psi). [ 1 ]

  5. High altitude breathing apparatus - Wikipedia

    en.wikipedia.org/wiki/High_altitude_breathing...

    In the region from sea level to around 3,000 m (10,000 ft), known as the physiological-efficient zone, oxygen levels are usually high enough for humans to function without supplemental oxygen and altitude decompression sickness is rare. The physiological-deficient zone extends from 3,600 m (12,000 ft) to about 15,000 m (50,000 ft).

  6. International Standard Atmosphere - Wikipedia

    en.wikipedia.org/wiki/International_Standard...

    Thus the standard consists of a tabulation of values at various altitudes, plus some formulas by which those values were derived. To accommodate the lowest points on Earth, the model starts at a base geopotential altitude of 610 meters (2,000 ft) below sea level, with standard temperature set at 19 °C.

  7. Pressure suit - Wikipedia

    en.wikipedia.org/wiki/Pressure_suit

    The region from sea level to around 3,000 m (10,000 ft) is known as the physiological-efficient zone. Oxygen levels are usually high enough for humans to function without supplemental oxygen and decompression sickness is rare. The physiological-deficient zone extends from 3,600 m (12,000 ft) to about 15,000 m (50,000 ft).

  8. Hypoxia (environmental) - Wikipedia

    en.wikipedia.org/wiki/Hypoxia_(environmental)

    An aquatic system lacking dissolved oxygen (0% saturation) is termed anaerobic, reducing, or anoxic. In water, oxygen levels are approximately 7 ppm or 0.0007% in good quality water, but fluctuate. [5] Many organisms require hypoxic conditions. Oxygen is poisonous to anaerobic bacteria for example. [3]

  9. High-altitude research - Wikipedia

    en.wikipedia.org/wiki/High-altitude_research

    The percentage of oxygen in the air at sea level is the same at high altitudes. But because the air molecules are more spread out at higher altitudes, each breath takes in less oxygen to the body. With this in mind, the lungs take in as much air as possible, but because the atmospheric pressure is lower the molecules are more dispersed ...