enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Continuous or discrete variable - Wikipedia

    en.wikipedia.org/.../Continuous_or_discrete_variable

    In probability theory and statistics, the probability distribution of a mixed random variable consists of both discrete and continuous components. A mixed random variable does not have a cumulative distribution function that is discrete or everywhere-continuous. An example of a mixed type random variable is the probability of wait time in a queue.

  3. Random variable - Wikipedia

    en.wikipedia.org/wiki/Random_variable

    A mixed random variable is a random variable whose cumulative distribution function is neither discrete nor everywhere-continuous. [10] It can be realized as a mixture of a discrete random variable and a continuous random variable; in which case the CDF will be the weighted average of the CDFs of the component variables. [10]

  4. Probability distribution - Wikipedia

    en.wikipedia.org/wiki/Probability_distribution

    An absolutely continuous random variable is a random variable whose probability distribution is absolutely continuous. There are many examples of absolutely continuous probability distributions: normal , uniform , chi-squared , and others .

  5. Mean - Wikipedia

    en.wikipedia.org/wiki/Mean

    If the random variable is denoted by , then the mean is also known as the expected value of (denoted ()). For a discrete probability distribution , the mean is given by ∑ x P ( x ) {\displaystyle \textstyle \sum xP(x)} , where the sum is taken over all possible values of the random variable and P ( x ) {\displaystyle P(x)} is the probability ...

  6. Expected value - Wikipedia

    en.wikipedia.org/wiki/Expected_value

    According to the change-of-variables formula for Lebesgue integration, [21] combined with the law of the unconscious statistician, [22] it follows that ⁡ [] = for any absolutely continuous random variable X. The above discussion of continuous random variables is thus a special case of the general Lebesgue theory, due to the fact that every ...

  7. Weibull distribution - Wikipedia

    en.wikipedia.org/wiki/Weibull_distribution

    In probability theory and statistics, the Weibull distribution / ˈ w aɪ b ʊ l / is a continuous probability distribution. It models a broad range of random variables, largely in the nature of a time to failure or time between events. Examples are maximum one-day rainfalls and the time a user spends on a web page.

  8. Range (statistics) - Wikipedia

    en.wikipedia.org/wiki/Range_(statistics)

    For n independent and identically distributed discrete random variables X 1, X 2, ..., X n with cumulative distribution function G(x) and probability mass function g(x) the range of the X i is the range of a sample of size n from a population with distribution function G(x).

  9. Glossary of probability and statistics - Wikipedia

    en.wikipedia.org/wiki/Glossary_of_probability...

    A measurable function on a probability space, often real-valued. The distribution function of a random variable gives the probability of the different values of the variable. The mean and variance of a random variable can also be derived. See also discrete random variable and continuous random variable. randomized block design range