enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Biot–Savart law - Wikipedia

    en.wikipedia.org/wiki/BiotSavart_law

    In physics, specifically electromagnetism, the BiotSavart law (/ ˈ b iː oʊ s ə ˈ v ɑːr / or / ˈ b j oʊ s ə ˈ v ɑːr /) [1] is an equation describing the magnetic field generated by a constant electric current. It relates the magnetic field to the magnitude, direction, length, and proximity of the electric current.

  3. Relativistic electromagnetism - Wikipedia

    en.wikipedia.org/wiki/Relativistic_electromagnetism

    Alternatively, introductory treatments of magnetism introduce the BiotSavart law, which describes the magnetic field associated with an electric current. An observer at rest with respect to a system of static, free charges will see no magnetic field.

  4. Gaussian units - Wikipedia

    en.wikipedia.org/wiki/Gaussian_units

    One difference between the Gaussian and SI systems is in the factor 4π in various formulas that relate the quantities that they define. With SI electromagnetic units, called rationalized, [3] [4] Maxwell's equations have no explicit factors of 4π in the formulae, whereas the inverse-square force laws – Coulomb's law and the BiotSavart law – do have a factor of 4π attached to the r 2.

  5. Ampère's force law - Wikipedia

    en.wikipedia.org/wiki/Ampère's_force_law

    where is the magnetic force constant from the BiotSavart law, / is the total force on either wire per unit length of the shorter (the longer is approximated as infinitely long relative to the shorter), is the distance between the two wires, and , are the direct currents carried by the wires.

  6. Magnetostatics - Wikipedia

    en.wikipedia.org/wiki/Magnetostatics

    Magnetostatics is the study of magnetic fields in systems where the currents are steady (not changing with time). It is the magnetic analogue of electrostatics, where the charges are stationary.

  7. Ampère's circuital law - Wikipedia

    en.wikipedia.org/wiki/Ampère's_circuital_law

    The mathematical statement of the law is a relation between the circulation of the magnetic field around some path (line integral) due to the current which passes through that enclosed path (surface integral).

  8. Jefimenko's equations - Wikipedia

    en.wikipedia.org/wiki/Jefimenko's_equations

    In electromagnetism, Jefimenko's equations (named after Oleg D. Jefimenko) give the electric field and magnetic field due to a distribution of electric charges and electric current in space, that takes into account the propagation delay (retarded time) of the fields due to the finite speed of light and relativistic effects.

  9. Retarded potential - Wikipedia

    en.wikipedia.org/wiki/Retarded_potential

    Position vectors r and r′ used in the calculation. The starting point is Maxwell's equations in the potential formulation using the Lorenz gauge: =, = where φ(r, t) is the electric potential and A(r, t) is the magnetic vector potential, for an arbitrary source of charge density ρ(r, t) and current density J(r, t), and is the D'Alembert operator. [2]