Search results
Results from the WOW.Com Content Network
Acetic anhydride, or ethanoic anhydride, is the chemical compound with the formula (CH 3 CO) 2 O. Commonly abbreviated Ac 2 O , it is the simplest isolable anhydride of a carboxylic acid and is widely used as a reagent in organic synthesis .
The following figure shows the reaction mechanism: [2] Reaktionsmechanismus Albright-Goldman-Oxidation. First, dimethyl sulfoxide (1) reacts with acetic anhydride to form a sulfonium ion. It reacts with the primary alcohol in an addition reaction. Furthermore, acetic acid is cleaved, so that intermediate 2 is formed. The latter reacts upon ...
A common type of organic acid anhydride is a carboxylic anhydride, where the parent acid is a carboxylic acid, the formula of the anhydride being (RC(O)) 2 O. Symmetrical acid anhydrides of this type are named by replacing the word acid in the name of the parent carboxylic acid by the word anhydride. [2] Thus, (CH 3 CO) 2 O is called acetic ...
Hippuric acid, the benzamide derivative of glycine, cyclizes in the presence of acetic anhydride, condensing to give 2-phenyl-oxazolone. [3] This intermediate also has two acidic protons and reacts with benzaldehyde, acetic anhydride and sodium acetate to a so-called azlactone. This compound on reduction gives access to phenylalanine. [4]
The mechanism of the Pummerer rearrangement begins with the acylation of the sulfoxide (resonance structures 1 and 2) by acetic anhydride to give 3, with acetate as byproduct. . The acetate then acts as a catalyst to induce an elimination reaction to produce the cationic-thial structure 4, with acetic acid as byprod
Acetic anhydride. This reagent is common in the laboratory; its use cogenerates acetic acid. [7] [10] Acetyl chloride. This reagent is also common in the laboratory, but its use cogenerates hydrogen chloride, which can be undesirable. [8] Ketene. At one time acetic anhydride was prepared by the reaction of ketene with acetic acid: [11]
This hydrolysis is the most heavily exploited reaction for acyl halides as it occurs in the industrial synthesis of acetic acid. an alcohol to form an ester; an amine to form an amide; an aromatic compound, using a Lewis acid catalyst such as AlCl 3, to form an aromatic ketone. [7] See Friedel-Crafts acylation.
Acetic formic anhydride can be produced by reacting sodium formate with acetyl chloride in anhydrous diethyl ether between 23–27 °C. [2] It can also be prepared by the reaction of acetic anhydride and formic acid at 0 °C.