Search results
Results from the WOW.Com Content Network
The medulla and pons also contain numerous small nuclei with a wide variety of sensory, motor, and regulatory functions. In the peripheral nervous system (PNS), a cluster of cell bodies of neurons (homologous to a CNS nucleus) is called a ganglion. The fascicles of nerve fibers in the PNS (homologous to CNS tracts) are called nerves.
The soma of a neuron (i.e., the main part of the neuron in which the dendrites branch off of) contains many organelles, including granules called Nissl granules, which are composed largely of rough endoplasmic reticulum and free polyribosomes. [5] The cell nucleus is a key feature of the soma.
The cell bodies of unipolar neurons are always found in ganglia. Sensory reception is a peripheral function, so the cell body is in the periphery, though closer to the CNS in a ganglion. The axon projects from the dendrite endings, past the cell body in a ganglion, and into the central nervous system. Bipolar: 1 axon and 1 dendrite.
Cranial nerve ganglia contain the cell bodies of cranial nerve neurons. Autonomic ganglia contain the cell bodies of autonomic nerves. In the autonomic nervous system, fibers from the central nervous system to the ganglia are known as preganglionic fibers , while those from the ganglia to the effector organ are called postganglionic fibers .
A dendrite (from Greek δένδρον déndron, "tree") or dendron is a branched cytoplasmic process that extends from a nerve cell that propagates the electrochemical stimulation received from other neural cells to the cell body, or soma, of the neuron from which the dendrites project.
Nervous tissue, also called neural tissue, is the main tissue component of the nervous system.The nervous system regulates and controls body functions and activity. It consists of two parts: the central nervous system (CNS) comprising the brain and spinal cord, and the peripheral nervous system (PNS) comprising the branching peripheral nerves.
Grey matter is distinguished from white matter in that it contains numerous cell bodies and relatively few myelinated axons, while white matter contains relatively few cell bodies and is composed chiefly of long-range myelinated axons. [1] The colour difference arises mainly from the whiteness of myelin. In living tissue, grey matter actually ...
Nissl bodies show changes under various physiological conditions and in pathological conditions such as axonotmesis, during which they may dissolve and largely disappear (chromatolysis). If the neuron is successful in repairing the damage, the Nissl bodies gradually reappear and return to their characteristic distribution within the cell. [5]