enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Normal distribution - Wikipedia

    en.wikipedia.org/wiki/Normal_distribution

    In probability theory and statistics, a normal distribution or Gaussian distribution is a type of continuous probability distribution for a real-valued random variable. The general form of its probability density function is [ 2 ] [ 3 ] f ( x ) = 1 2 π σ 2 e − ( x − μ ) 2 2 σ 2 . {\displaystyle f(x)={\frac {1}{\sqrt {2\pi \sigma ^{2 ...

  3. Gaussian function - Wikipedia

    en.wikipedia.org/wiki/Gaussian_function

    Taking the Fourier transform (unitary, angular-frequency convention) of a Gaussian function with parameters a = 1, b = 0 and c yields another Gaussian function, with parameters , b = 0 and /. [3] So in particular the Gaussian functions with b = 0 and = are kept fixed by the Fourier transform (they are eigenfunctions of the Fourier transform ...

  4. Generalized normal distribution - Wikipedia

    en.wikipedia.org/.../Generalized_normal_distribution

    So there is no strong reason to prefer the "generalized" normal distribution of type 1, e.g. over a combination of Student-t and a normalized extended Irwin–Hall – this would include e.g. the triangular distribution (which cannot be modeled by the generalized Gaussian type 1). A symmetric distribution which can model both tail (long and ...

  5. Q-function - Wikipedia

    en.wikipedia.org/wiki/Q-function

    In statistics, the Q-function is the tail distribution function of the standard normal distribution. [ 1 ] [ 2 ] In other words, Q ( x ) {\displaystyle Q(x)} is the probability that a normal (Gaussian) random variable will obtain a value larger than x {\displaystyle x} standard deviations.

  6. Truncated normal distribution - Wikipedia

    en.wikipedia.org/wiki/Truncated_normal_distribution

    A random variate defined as = (() + (() ())) + with the cumulative distribution function and its inverse, a uniform random number on (,), follows the distribution truncated to the range (,). This is simply the inverse transform method for simulating random variables.

  7. Wrapped normal distribution - Wikipedia

    en.wikipedia.org/wiki/Wrapped_normal_distribution

    In terms of the circular variable = the circular moments of the wrapped normal distribution are the characteristic function of the normal distribution evaluated at integer arguments: z n = ∫ Γ e i n θ f W N ( θ ; μ , σ ) d θ = e i n μ − n 2 σ 2 / 2 . {\displaystyle \langle z^{n}\rangle =\int _{\Gamma }e^{in\theta }\,f_{WN}(\theta ...

  8. Matrix normal distribution - Wikipedia

    en.wikipedia.org/wiki/Matrix_normal_distribution

    The probability density function for the random matrix X (n × p) that follows the matrix normal distribution , (,,) has the form: (,,) = ⁡ ([() ()]) / | | / | | /where denotes trace and M is n × p, U is n × n and V is p × p, and the density is understood as the probability density function with respect to the standard Lebesgue measure in , i.e.: the measure corresponding to integration ...

  9. File:Gaussian 2d surface.png - Wikipedia

    en.wikipedia.org/wiki/File:Gaussian_2d_surface.png

    X, Y: Meshgrids of x- and y-values for the Gaussian. Z: The output of the Gaussian function. colormap: The colormap for the surface, mapped to the Z-values of the graph. title: Title of the graph. filetype: Three-letter extension of the image filetype for saving the graph.