enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Normal distribution - Wikipedia

    en.wikipedia.org/wiki/Normal_distribution

    In probability theory and statistics, a normal distribution or Gaussian distribution is a type of continuous probability distribution for a real-valued random variable. The general form of its probability density function is [ 2 ] [ 3 ] f ( x ) = 1 2 π σ 2 e − ( x − μ ) 2 2 σ 2 . {\displaystyle f(x)={\frac {1}{\sqrt {2\pi \sigma ^{2 ...

  3. Gaussian function - Wikipedia

    en.wikipedia.org/wiki/Gaussian_function

    Taking the Fourier transform (unitary, angular-frequency convention) of a Gaussian function with parameters a = 1, b = 0 and c yields another Gaussian function, with parameters , b = 0 and /. [3] So in particular the Gaussian functions with b = 0 and = are kept fixed by the Fourier transform (they are eigenfunctions of the Fourier transform ...

  4. Generalized normal distribution - Wikipedia

    en.wikipedia.org/.../Generalized_normal_distribution

    So there is no strong reason to prefer the "generalized" normal distribution of type 1, e.g. over a combination of Student-t and a normalized extended Irwin–Hall – this would include e.g. the triangular distribution (which cannot be modeled by the generalized Gaussian type 1). A symmetric distribution which can model both tail (long and ...

  5. Error function - Wikipedia

    en.wikipedia.org/wiki/Error_function

    Download QR code; Print/export ... a 1 = 0.254829592, a 2 = −0.284496736, a 3 = 1.421413741, ... the normal cumulative distribution function plotted in the complex ...

  6. Q-function - Wikipedia

    en.wikipedia.org/wiki/Q-function

    In statistics, the Q-function is the tail distribution function of the standard normal distribution. [ 1 ] [ 2 ] In other words, Q ( x ) {\displaystyle Q(x)} is the probability that a normal (Gaussian) random variable will obtain a value larger than x {\displaystyle x} standard deviations.

  7. Gaussian process - Wikipedia

    en.wikipedia.org/wiki/Gaussian_process

    In probability theory and statistics, a Gaussian process is a stochastic process (a collection of random variables indexed by time or space), such that every finite collection of those random variables has a multivariate normal distribution. The distribution of a Gaussian process is the joint distribution of all those (infinitely many) random ...

  8. Truncated normal distribution - Wikipedia

    en.wikipedia.org/wiki/Truncated_normal_distribution

    A random variate defined as = (() + (() ())) + with the cumulative distribution function and its inverse, a uniform random number on (,), follows the distribution truncated to the range (,). This is simply the inverse transform method for simulating random variables.

  9. Exponentially modified Gaussian distribution - Wikipedia

    en.wikipedia.org/wiki/Exponentially_modified...

    There are three parameters: the mean of the normal distribution (μ), the standard deviation of the normal distribution (σ) and the exponential decay parameter (τ = 1 / λ). The shape K = τ / σ is also sometimes used to characterise the distribution. Depending on the values of the parameters, the distribution may vary in shape from almost ...