enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Atomic diffusion - Wikipedia

    en.wikipedia.org/wiki/Atomic_diffusion

    Atomic diffusion in polycrystalline materials is therefore often modeled using an effective diffusion coefficient, which is a combination of lattice, and grain boundary diffusion coefficients. In general, surface diffusion occurs much faster than grain boundary diffusion, and grain boundary diffusion occurs much faster than lattice diffusion.

  3. Thermocompression bonding - Wikipedia

    en.wikipedia.org/wiki/Thermocompression_bonding

    Surface diffusion, also referred to as atomic diffusion, describes the process along the surface interface, when atoms move from surface to surface to free energy. The grain boundary diffusion terms the free migration of atoms in free atomic lattice spaces. This is based on polycrystalline layers and its boundaries of incomplete matching of the ...

  4. Diffusion - Wikipedia

    en.wikipedia.org/wiki/Diffusion

    Diffusion is the net movement of anything (for example, atoms, ... atomic diffusion is used to model the stellar atmospheres of chemically peculiar stars. [7] [8] ...

  5. Lattice diffusion coefficient - Wikipedia

    en.wikipedia.org/wiki/Lattice_diffusion_coefficient

    Interstitial Atomic diffusion across a 4-coordinated lattice. Note that the atoms often block each other from moving to adjacent sites. As per Fick’s law, the net flux (or movement of atoms) is always in the opposite direction of the concentration gradient.

  6. Kirkendall effect - Wikipedia

    en.wikipedia.org/wiki/Kirkendall_effect

    The Kirkendall effect is the motion of the interface between two metals that occurs due to the difference in diffusion rates of the metal atoms. The effect can be observed, for example, by placing insoluble markers at the interface between a pure metal and an alloy containing that metal, and heating to a temperature where atomic diffusion is reasonable for the given timescale; the boundary ...

  7. Sintering - Wikipedia

    en.wikipedia.org/wiki/Sintering

    This diffusion is caused by a gradient of chemical potential – atoms move from an area of higher chemical potential to an area of lower chemical potential. The different paths the atoms take to get from one spot to another are the "sintering mechanisms" or "matter transport mechanisms".

  8. Thermal fluctuations - Wikipedia

    en.wikipedia.org/wiki/Thermal_fluctuations

    Atomic diffusion on the surface of a crystal. The shaking of the atoms is an example of thermal fluctuations. Likewise, thermal fluctuations provide the energy necessary for the atoms to occasionally hop from one site to a neighboring one. For simplicity, the thermal fluctuations of the blue atoms are not shown.

  9. Surface diffusion - Wikipedia

    en.wikipedia.org/wiki/Surface_diffusion

    Surface diffusion is a general process involving the motion of adatoms, molecules, and atomic clusters (adparticles) at solid material surfaces. [1] The process can generally be thought of in terms of particles jumping between adjacent adsorption sites on a surface, as in figure 1.