Search results
Results from the WOW.Com Content Network
Atomic diffusion in polycrystalline materials is therefore often modeled using an effective diffusion coefficient, which is a combination of lattice, and grain boundary diffusion coefficients. In general, surface diffusion occurs much faster than grain boundary diffusion, and grain boundary diffusion occurs much faster than lattice diffusion.
The diffusion requires atomic contact between the surfaces due to the atomic motion. The atoms migrate from one crystal lattice to the other one based on crystal lattice vibration. [2] This atomic interaction sticks the interface together. [1] The diffusion process is described by the following three processes: surface diffusion; grain boundary ...
Diffusion is the net movement of anything (for example, atoms, ... atomic diffusion is used to model the stellar atmospheres of chemically peculiar stars. [7] [8] ...
Surface diffusion is a general process involving the motion of adatoms, molecules, and atomic clusters (adparticles) at solid material surfaces. [1] The process can generally be thought of in terms of particles jumping between adjacent adsorption sites on a surface, as in figure 1.
Each atomic species can be given its own intrinsic diffusion coefficient ~ and ~, expressing the diffusion of a certain species in the whole system. The interdiffusion coefficient D ~ {\displaystyle {\tilde {D}}} is defined by the Darken's equation as:
The Kirkendall effect is the motion of the interface between two metals that occurs due to the difference in diffusion rates of the metal atoms. The effect can be observed, for example, by placing insoluble markers at the interface between a pure metal and an alloy containing that metal, and heating to a temperature where atomic diffusion is reasonable for the given timescale; the boundary ...
Get AOL Mail for FREE! Manage your email like never before with travel, photo & document views. Personalize your inbox with themes & tabs. You've Got Mail!
Molecular diffusion, often simply called diffusion, is the thermal motion of all (liquid or gas) particles at temperatures above absolute zero. The rate of this movement is a function of temperature, viscosity of the fluid and the size (mass) of the particles.