Search results
Results from the WOW.Com Content Network
Free radical reactions are redox reactions that occur as part of homeostasis and killing microorganisms. In these reactions, an electron detaches from a molecule and then re-attaches almost instantly. Free radicals are part of redox molecules and can become harmful to the human body if they do not reattach to the redox molecule or an antioxidant.
Examples of substances that are common reducing agents include hydrogen, Carbon monoxide, the alkali metals, formic acid, [1] oxalic acid, [2] and sulfite compounds. In their pre-reaction states, reducers have extra electrons (that is, they are by themselves reduced) and oxidizers lack electrons (that is, they are by themselves oxidized).
In reactions involving donation of a hydrogen atom, oxygen is reduced to water (H 2 O) or hydrogen peroxide (H 2 O 2). Some oxidation reactions, such as those involving monoamine oxidase or xanthine oxidase, typically do not involve free molecular oxygen. [1] [2] The oxidases are a subclass of the oxidoreductases. The use of dioxygen is the ...
For example, an enzyme that catalyzed this reaction would be an oxidoreductase: A – + B → A + B – In this example, A is the reductant (electron donor) and B is the oxidant (electron acceptor). In biochemical reactions, the redox reactions are sometimes more difficult to see, such as this reaction from glycolysis:
Ferredoxins (from Latin ferrum: iron + redox, often abbreviated "fd") are iron–sulfur proteins that mediate electron transfer in a range of metabolic reactions. The term "ferredoxin" was coined by D.C. Wharton of the DuPont Co. and applied to the "iron protein" first purified in 1962 by Mortenson, Valentine, and Carnahan from the anaerobic bacterium Clostridium pasteurianum.
[4] [5] The redox ladder displays the order in which redox reactions occur based on the free energy gained from redox pairs. [4] [5] [6] These redox gradients form both spatially and temporally as a result of differences in microbial processes, chemical composition of the environment, and oxidative potential.
Current organisms require redox reactions to induce metabolism and other life processes. Metals have a tendency to lose electrons and are important for redox reactions. Metals have become so central to cellular function that the collection of metal-binding proteins (referred to as the metallomes ) accounts for over 30% of all proteins in the cell.
Example of a reduction–oxidation reaction between sodium and chlorine, with the OIL RIG mnemonic [1] Electron transfer (ET) occurs when an electron relocates from an atom, ion, or molecule, to another such chemical entity. ET describes the mechanism by which electrons are transferred in redox reactions. [2] Electrochemical processes are ET