enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Direct product - Wikipedia

    en.wikipedia.org/wiki/Direct_product

    The direct sum and direct product are not isomorphic for infinite indices, where the elements of a direct sum are zero for all but for a finite number of entries. They are dual in the sense of category theory : the direct sum is the coproduct , while the direct product is the product.

  3. Direct sum - Wikipedia

    en.wikipedia.org/wiki/Direct_sum

    The direct sum of abelian groups is a prototypical example of a direct sum. Given two such groups ( A , ∘ ) {\displaystyle (A,\circ )} and ( B , ∙ ) , {\displaystyle (B,\bullet ),} their direct sum A ⊕ B {\displaystyle A\oplus B} is the same as their direct product .

  4. Direct sum of modules - Wikipedia

    en.wikipedia.org/wiki/Direct_sum_of_modules

    The direct sum is a submodule of the direct product of the modules M i (Bourbaki 1989, §II.1.7). The direct product is the set of all functions α from I to the disjoint union of the modules M i with α(i)∈M i, but not necessarily vanishing for all but finitely many i. If the index set I is finite, then the direct sum and the direct product ...

  5. Coproduct - Wikipedia

    en.wikipedia.org/wiki/Coproduct

    For example, the coproduct in the category of groups, called the free product, is quite complicated. On the other hand, in the category of abelian groups (and equally for vector spaces ), the coproduct, called the direct sum , consists of the elements of the direct product which have only finitely many nonzero terms.

  6. Direct sum of groups - Wikipedia

    en.wikipedia.org/wiki/Direct_sum_of_groups

    The group operation in the external direct sum is pointwise multiplication, as in the usual direct product. This subset does indeed form a group, and for a finite set of groups {H i} the external direct sum is equal to the direct product. If G = ΣH i, then G is isomorphic to Σ E {H i}. Thus, in a sense, the direct sum is an "internal ...

  7. Direct product of groups - Wikipedia

    en.wikipedia.org/wiki/Direct_product_of_groups

    Unlike a finite direct product, the infinite direct product Π i∈I G i is not generated by the elements of the isomorphic subgroups { G i } i∈I. Instead, these subgroups generate a subgroup of the direct product known as the infinite direct sum, which consists of all elements that have only finitely many non-identity components.

  8. Functor - Wikipedia

    en.wikipedia.org/wiki/Functor

    Functors are often defined by universal properties; examples are the tensor product, the direct sum and direct product of groups or vector spaces, construction of free groups and modules, direct and inverse limits. The concepts of limit and colimit generalize several of the above.

  9. Product (category theory) - Wikipedia

    en.wikipedia.org/wiki/Product_(category_theory)

    In category theory, the product of two (or more) objects in a category is a notion designed to capture the essence behind constructions in other areas of mathematics such as the Cartesian product of sets, the direct product of groups or rings, and the product of topological spaces.