Search results
Results from the WOW.Com Content Network
Medical ultrasound includes diagnostic techniques (mainly imaging techniques) using ultrasound, as well as therapeutic applications of ultrasound. In diagnosis, it is used to create an image of internal body structures such as tendons, muscles, joints, blood vessels, and internal organs, to measure some characteristics (e.g., distances and velocities) or to generate an informative audible sound.
Ultrasound image showing the liver, gallbladder and common bile duct. Medical ultrasound uses high frequency broadband sound waves in the megahertz range that are reflected by tissue to varying degrees to produce (up to 3D) images. This is commonly associated with imaging the fetus in pregnant women. Uses of ultrasound are much broader, however.
The reflected ultrasound is received by the probe, transformed into an electric impulse as voltage, and sent to the engine for signal processing and conversion to an image on the screen. The depth reached by the ultrasound beam is dependent on the frequency of the probe used. The higher the frequency, the lesser the depth reached. [9]
Ultrasound is defined by the American National Standards Institute as "sound at frequencies greater than 20 kHz". In air at atmospheric pressure, ultrasonic waves have wavelengths of 1.9 cm or less. Ultrasound can be generated at very high frequencies; ultrasound is used for sonochemistry at frequencies up to multiple hundreds of kilohertz.
3D ultrasound is a medical ultrasound technique, often used in fetal, cardiac, trans-rectal and intra-vascular applications. 3D ultrasound refers specifically to the volume rendering of ultrasound data.
Ultrasound attenuation is frequency-dependent: higher frequencies are attenuated faster with increasing depth. Selecting ultrasound detectors that are most sensitive at the appropriate frequency can improve sensitivity at the target imaging depth, but at the cost of spatial resolution.
Time gain compensation (TGC) is a setting applied in diagnostic ultrasound imaging to account for tissue attenuation. [1] By increasing the received signal intensity with depth, the artifacts in the uniformity of a B-mode image intensity are reduced.
Diagnostic medical sonography (DMS), a branch of diagnostic medical imaging, is the use of imaging by medical ultrasound for medical diagnosis. DMS uses non-ionizing ultrasound to produce 2D and 3D images of the body. In Canada, the credentialing for diagnostic medical sonography is the Canadian Association of Registered Ultrasound Professionals.