Search results
Results from the WOW.Com Content Network
Ordinal data is a categorical, statistical data type where the variables have natural, ordered categories and the distances between the categories are not known. [1]: 2 These data exist on an ordinal scale, one of four levels of measurement described by S. S. Stevens in 1946.
The ordinal scale places events in order, but there is no attempt to make the intervals of the scale equal in terms of some rule. Rank orders represent ordinal scales and are frequently used in research relating to qualitative phenomena. A student's rank in his graduation class involves the use of an ordinal scale.
Scaling of data: One of the properties of the tests is the scale of the data, which can be interval-based, ordinal or nominal. [3] Nominal scale is also known as categorical. [6] Interval scale is also known as numerical. [6] When categorical data has only two possibilities, it is called binary or dichotomous. [1]
In fact, there may also appear phenomena which even question the ordinal scale level in Likert scales. [22] For example, in a set of items A, B, C rated with a Likert scale circular relations like A > B, B > C and C > A can appear. This violates the axiom of transitivity for the ordinal scale.
Examples are attitude scales and opinion scales. Some data are measured at the ratio level. Numbers indicate magnitude of difference and there is a fixed zero point. Ratios can be calculated. Examples include: age, income, price, costs, sales revenue, sales volume, and market share.
Composite measure in statistics and research design refer to composite measures of variables, i.e. measurements based on multiple data items. [1] An example of a composite measure is an IQ test, which gives a single score based on a series of responses to various questions. Three common composite measures include:
Ordinal regression turns up often in the social sciences, for example in the modeling of human levels of preference (on a scale from, say, 1–5 for "very poor" through "excellent"), as well as in information retrieval. In machine learning, ordinal regression may also be called ranking learning. [3] [a]
The nominal scale, also called the categorical variable scale, is defined as a scale used for labeling variables into distinct classifications and does not involve a quantitative value or order. Ordinal-polytomous, where the respondent has more than two ordered options