enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Cluster analysis - Wikipedia

    en.wikipedia.org/wiki/Cluster_analysis

    The key drawback of DBSCAN and OPTICS is that they expect some kind of density drop to detect cluster borders. On data sets with, for example, overlapping Gaussian distributions – a common use case in artificial data – the cluster borders produced by these algorithms will often look arbitrary, because the cluster density decreases continuously.

  3. Missing data - Wikipedia

    en.wikipedia.org/wiki/Missing_data

    Missing not at random (MNAR) (also known as nonignorable nonresponse) is data that is neither MAR nor MCAR (i.e. the value of the variable that's missing is related to the reason it's missing). [5] To extend the previous example, this would occur if men failed to fill in a depression survey because of their level of depression.

  4. Automatic clustering algorithms - Wikipedia

    en.wikipedia.org/wiki/Automatic_Clustering...

    Automatic clustering algorithms are algorithms that can perform clustering without prior knowledge of data sets. In contrast with other cluster analysis techniques, automatic clustering algorithms can determine the optimal number of clusters even in the presence of noise and outlier points. [1] [needs context]

  5. Determining the number of clusters in a data set - Wikipedia

    en.wikipedia.org/wiki/Determining_the_number_of...

    The average silhouette of the data is another useful criterion for assessing the natural number of clusters. The silhouette of a data instance is a measure of how closely it is matched to data within its cluster and how loosely it is matched to data of the neighboring cluster, i.e., the cluster whose average distance from the datum is lowest. [8]

  6. Model-based clustering - Wikipedia

    en.wikipedia.org/wiki/Model-based_clustering

    Much of the model-based clustering software is in the form of a publicly and freely available R package. Many of these are listed in the CRAN Task View on Cluster Analysis and Finite Mixture Models. [34] The most used such package is mclust, [35] [36] which is used to cluster continuous data and has been downloaded over 8 million times. [37]

  7. Nearest-neighbor chain algorithm - Wikipedia

    en.wikipedia.org/wiki/Nearest-neighbor_chain...

    Many problems in data analysis concern clustering, grouping data items into clusters of closely related items. Hierarchical clustering is a version of cluster analysis in which the clusters form a hierarchy or tree-like structure rather than a strict partition of the data items. In some cases, this type of clustering may be performed as a way ...

  8. k-means++ - Wikipedia

    en.wikipedia.org/wiki/K-means++

    In data mining, k-means++ [1] [2] is an algorithm for choosing the initial values (or "seeds") for the k-means clustering algorithm. It was proposed in 2007 by David Arthur and Sergei Vassilvitskii, as an approximation algorithm for the NP-hard k-means problem—a way of avoiding the sometimes poor clusterings found by the standard k-means algorithm.

  9. Key clustering - Wikipedia

    en.wikipedia.org/wiki/Key_clustering

    Key or hash function should avoid clustering, the mapping of two or more keys to consecutive slots. Such clustering may cause the lookup cost to skyrocket, even if the load factor is low and collisions are infrequent. The popular multiplicative hash [1] is claimed to have particularly poor clustering behaviour. [2]