Search results
Results from the WOW.Com Content Network
When "E" is used to denote "expected value", authors use a variety of stylizations: the expectation operator can be stylized as E (upright), E (italic), or (in blackboard bold), while a variety of bracket notations (such as E(X), E[X], and EX) are all used. Another popular notation is μ X.
f is the local Fanning friction factor (dimensionless); τ is the local shear stress (units of pascals (Pa) = kg/m 2, or pounds per square foot (psf) = lbm/ft 2); q is the bulk dynamic pressure (Pa or psf), given by: = ρ is the density of the fluid (kg/m 3 or lbm/ft 3) u is the bulk flow velocity (m/s or ft/s)
The firm's net debt and the value of other claims are then subtracted from EV to calculate the equity value. If only the free cash flows to equity (FCFE) are discounted, then the relevant discount rate should be the required return on equity. This provides a more direct way of estimating equity value.
f stands for the Darcy friction factor. Its value depends on the flow's Reynolds number Re and on the pipe's relative roughness ε / D. The log function is understood to be base-10 (as is customary in engineering fields): if x = log(y), then y = 10 x. The ln function is understood to be base-e: if x = ln(y), then y = e x.
In electrochemistry, the Nernst equation is a chemical thermodynamical relationship that permits the calculation of the reduction potential of a reaction (half-cell or full cell reaction) from the standard electrode potential, absolute temperature, the number of electrons involved in the redox reaction, and activities (often approximated by concentrations) of the chemical species undergoing ...
Here F X is the cumulative distribution function of X, f X is the corresponding probability density function, Q X (p) is the corresponding inverse cumulative distribution function also called the quantile function, [2] and the integrals are of the Riemann–Stieltjes kind.
The time constant is related to the RC circuit's cutoff frequency f c, by = = or, equivalently, = = where resistance in ohms and capacitance in farads yields the time constant in seconds or the cutoff frequency in hertz (Hz).
Here, k e is a constant, q 1 and q 2 are the quantities of each charge, and the scalar r is the distance between the charges. The force is along the straight line joining the two charges. If the charges have the same sign, the electrostatic force between them makes them repel; if they have different signs, the force between them makes them attract.