Search results
Results from the WOW.Com Content Network
a depth-first search starting at the node A, assuming that the left edges in the shown graph are chosen before right edges, and assuming the search remembers previously visited nodes and will not repeat them (since this is a small graph), will visit the nodes in the following order: A, B, D, F, E, C, G.
A depth-first search (DFS) is an algorithm for traversing a finite graph. DFS visits the child vertices before visiting the sibling vertices; that is, it traverses the depth of any particular path before exploring its breadth. A stack (often the program's call stack via recursion) is generally used when implementing the algorithm.
An example of a deterministic finite automaton that accepts only binary numbers that are multiples of 3. The state S 0 is both the start state and an accept state. For example, the string "1001" leads to the state sequence S 0, S 1, S 2, S 1, S 0, and is hence accepted.
a depth-first search starting at A, assuming that the left edges in the shown graph are chosen before right edges, and assuming the search remembers previously-visited nodes and will not repeat them (since this is a small graph), will visit the nodes in the following order: A, B, D, F, E, C, G.
Dijkstra's algorithm, as another example of a uniform-cost search algorithm, can be viewed as a special case of A* where = for all x. [12] [13] General depth-first search can be implemented using A* by considering that there is a global counter C initialized with a very large value.
The depth is standard to maintain during a depth-first search. The lowpoint of v can be computed after visiting all descendants of v (i.e., just before v gets popped off the depth-first-search stack ) as the minimum of the depth of v , the depth of all neighbors of v (other than the parent of v in the depth-first-search tree) and the lowpoint ...
Upgrade to a faster, more secure version of a supported browser. It's free and it only takes a few moments:
An alternative algorithm for topological sorting is based on depth-first search.The algorithm loops through each node of the graph, in an arbitrary order, initiating a depth-first search that terminates when it hits any node that has already been visited since the beginning of the topological sort or the node has no outgoing edges (i.e., a leaf node):