enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. e (mathematical constant) - Wikipedia

    en.wikipedia.org/wiki/E_(mathematical_constant)

    The number e is a mathematical constant approximately equal to 2.71828 that is the base of the natural logarithm and exponential function.It is sometimes called Euler's number, after the Swiss mathematician Leonhard Euler, though this can invite confusion with Euler numbers, or with Euler's constant, a different constant typically denoted .

  3. Contributions of Leonhard Euler to mathematics - Wikipedia

    en.wikipedia.org/wiki/Contributions_of_Leonhard...

    The 18th-century Swiss mathematician Leonhard Euler (1707–1783) is among the most prolific and successful mathematicians in the history of the field. His seminal work had a profound impact in numerous areas of mathematics and he is widely credited for introducing and popularizing modern notation and terminology.

  4. Leonhard Euler - Wikipedia

    en.wikipedia.org/wiki/Leonhard_Euler

    Euler describes 18 such genres, with the general definition 2 m A, where A is the "exponent" of the genre (i.e. the sum of the exponents of 3 and 5) and 2 m (where "m is an indefinite number, small or large, so long as the sounds are perceptible" [114]), expresses that the relation holds independently of the number of octaves concerned.

  5. Euler's constant - Wikipedia

    en.wikipedia.org/wiki/Euler's_constant

    Using the same approach, in 2013, M. Ram Murty and A. Zaytseva showed that the generalized Euler constants have the same property, [3] [44] [45] where the generalized Euler constant are defined as = (= ⁡ = ()), where ⁠ ⁠ is a fixed list of prime numbers, () = if at least one of the primes in ⁠ ⁠ is a prime factor of ⁠ ⁠, and ...

  6. History of logarithms - Wikipedia

    en.wikipedia.org/wiki/History_of_logarithms

    The history of logarithms is the story of a correspondence ... Here, Euler's number e makes the shaded area equal to 1. Opus geometricum posthumum, 1668.

  7. Euler numbers - Wikipedia

    en.wikipedia.org/wiki/Euler_numbers

    The Euler numbers appear in the Taylor series expansions of the secant and hyperbolic secant functions. The latter is the function in the definition. The latter is the function in the definition. They also occur in combinatorics , specifically when counting the number of alternating permutations of a set with an even number of elements.

  8. History of mathematical notation - Wikipedia

    en.wikipedia.org/wiki/History_of_mathematical...

    The history of mathematical notation [1] ... the ancient Egyptians paid attention to geometry and numbers, ... This usage was popularized in 1737 by Euler.

  9. Euler's identity - Wikipedia

    en.wikipedia.org/wiki/Euler's_identity

    In mathematics, Euler's identity [note 1] (also known as Euler's equation) is the equality + = where e {\displaystyle e} is Euler's number , the base of natural logarithms , i {\displaystyle i} is the imaginary unit , which by definition satisfies i 2 = − 1 {\displaystyle i^{2}=-1} , and