Search results
Results from the WOW.Com Content Network
In geometry, a polytope (e.g. a polygon or polyhedron) or a tiling is isogonal or vertex-transitive if all its vertices are equivalent under the symmetries of the figure. This implies that each vertex is surrounded by the same kinds of face in the same or reverse order, and with the same angles between corresponding faces.
In geometry, the isogonal conjugate of a point P with respect to a triangle ABC is constructed by reflecting the lines PA, PB, PC about the angle bisectors of A, B, C respectively. These three reflected lines concur at the isogonal conjugate of P. (This definition applies only to points not on a sideline of triangle ABC.)
A shape grammar consists of shape rules and a generation engine that selects and processes rules. A shape rule defines how an existing (part of a) shape can be transformed. A shape rule consists of two parts separated by an arrow pointing from left to right. The part left of the arrow is termed the Left-Hand Side (LHS). It depicts a condition ...
In geometry, a polygon is traditionally a plane figure that is bounded by a finite chain of straight line segments closing in a loop to form a closed chain. These segments are called its edges or sides , and the points where two of the edges meet are the polygon's vertices (singular: vertex) or corners .
This is a list of two-dimensional geometric shapes in Euclidean and other geometries. For mathematical objects in more dimensions, see list of mathematical shapes. For a broader scope, see list of shapes.
In many cases another definition is preferable: a rectilinear polygon is a polygon with sides parallel to the axes of Cartesian coordinates. The distinction becomes crucial when spoken about sets of polygons: the latter definition would imply that sides of all polygons in the set are aligned with the same coordinate axes.
Get AOL Mail for FREE! Manage your email like never before with travel, photo & document views. Personalize your inbox with themes & tabs. You've Got Mail!
Definition: [7] The midpoint of two elements x and y in a vector space is the vector 1 / 2 (x + y). Theorem [ 7 ] [ 8 ] — Let A : X → Y be a surjective isometry between normed spaces that maps 0 to 0 ( Stefan Banach called such maps rotations ) where note that A is not assumed to be a linear isometry.