Search results
Results from the WOW.Com Content Network
Many mechanisms exist reflecting the myriad types of cross-couplings, including those that do not require metal catalysts. [7] Often, however, cross-coupling refers to a metal-catalyzed reaction of a nucleophilic partner with an electrophilic partner. Mechanism proposed for Kumada coupling (L = Ligand, Ar = Aryl).
The most common type of coupling reaction is the cross coupling reaction. [1] [2] [3] Richard F. Heck, Ei-ichi Negishi, and Akira Suzuki were awarded the 2010 Nobel Prize in Chemistry for developing palladium-catalyzed cross coupling reactions. [4] [5] Broadly speaking, two types of coupling reactions are recognized:
Many Pd-catalyzed cross coupling reactions involve oxidative addition to form Pd(II) derivatives called oxidative addition complexes (OAC). The resulting L–Pd II (Ar)X OAC is electrophilic such that it reacts with a nucleophile and forms C–C and C–heteroatom bonds, after reductive elimination. [61] Such Pd II OACs have been used as ...
The coupling of 2-chlorobenzoic acid and aniline is illustrative: [4] C 6 H 5 NH 2 + ClC 6 H 4 CO 2 H + KOH → C 6 H 5 N(H)−C 6 H 4 CO 2 H + KCl + H 2 O. A typical catalyst is formed from copper(I) iodide and phenanthroline. The reaction is an alternative to the Buchwald–Hartwig amination reaction.
The Hiyama coupling is a palladium-catalyzed cross-coupling reaction of organosilanes with organic halides used in organic chemistry to form carbon–carbon bonds (C-C bonds). ). This reaction was discovered in 1988 by Tamejiro Hiyama and Yasuo Hatanaka as a method to form carbon-carbon bonds synthetically with chemo- and regioselectivity
The Negishi coupling is a widely employed transition metal catalyzed cross-coupling reaction. The reaction couples organic halides or triflates with organozinc compounds, forming carbon-carbon bonds (C-C) in the process. A palladium (0) species is generally utilized as the catalyst, though nickel is sometimes used.
The scope of the Corey-House synthesis is exceptionally broad, and a range of lithium diorganylcuprates (R 2 CuLi, R = 1°, 2°, or 3° alkyl, aryl, or alkenyl) and organyl (pseudo)halides (RX, R = methyl, benzylic, allylic, 1°, or cyclic 2° alkyl, aryl, or alkenyl and X = Br, I, OTs, or OTf; X = Cl is marginal) will undergo coupling as the nucleophilic and electrophilic coupling partners ...
Both palladium and copper complexes of the compound exhibit high activity for the coupling of aryl halides and aryl tosylates with various amides. [1] It is also an efficient ligand for several commonly used C–C bond-forming cross-coupling reactions, including the Negishi, Suzuki, and the copper-free Sonogashira coupling reactions.