Search results
Results from the WOW.Com Content Network
A cell membrane is simplified as lipid bilayer plus membrane skeleton. The skeleton is a cross-linking protein network and joints to the bilayer at some points. Assume that each proteins in the membrane skeleton have similar length which is much smaller than the whole size of the cell membrane, and that the membrane is locally 2-dimensional ...
Beta dispersion is the phenomenon associated with the ability of a biological cell membrane to filter out low frequency currents and allow high frequency currents to pass through. It was originally hypothesized by Rudolf Höber in 1910 and confirmed through a series of experiments between 1910 and 1913.
Several assumptions are made in deriving the GHK flux equation (Hille 2001, p. 445) : The membrane is a homogeneous substance; The electrical field is constant so that the transmembrane potential varies linearly across the membrane; The ions access the membrane instantaneously from the intra- and extracellular solutions
Leak channels account for the natural permeability of the membrane to ions and take the form of the equation for voltage-gated channels, where the conductance is a constant. Thus, the leak current due to passive leak ion channels in the Hodgkin-Huxley formalism is I l = g l e a k ( V − V l e a k ) {\displaystyle I_{l}=g_{leak}(V-V_{leak})} .
The Goldman–Hodgkin–Katz voltage equation, sometimes called the Goldman equation, is used in cell membrane physiology to determine the resting potential across a cell's membrane, taking into account all of the ions that are permeant through that membrane.
A drainage equation is an equation describing the relation between depth and spacing of parallel subsurface drains, depth of the watertable, depth and hydraulic conductivity of the soils. It is used in drainage design. Parameters in Hooghoudt's drainage equation. A well known steady-state drainage
Donnan equilibrium across a cell membrane (schematic). The Gibbs–Donnan effect (also known as the Donnan's effect, Donnan law, Donnan equilibrium, or Gibbs–Donnan equilibrium) is a name for the behaviour of charged particles near a semi-permeable membrane that sometimes fail to distribute evenly across the two sides of the membrane. [1]
In general, flux in biology relates to movement of a substance between compartments. There are several cases where the concept of flux is important. The movement of molecules across a membrane: in this case, flux is defined by the rate of diffusion or transport of a substance across a permeable membrane.