enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Convolutional neural network - Wikipedia

    en.wikipedia.org/wiki/Convolutional_neural_network

    A convolutional neural network (CNN) is a regularized type of feed-forward neural network that learns features by itself via filter (or kernel) optimization. This type of deep learning network has been applied to process and make predictions from many different types of data including text, images and audio. [1]

  3. Deep learning - Wikipedia

    en.wikipedia.org/wiki/Deep_learning

    Deep learning is a subset of machine learning that focuses on utilizing neural networks to perform tasks such as classification, regression, and representation learning.The field takes inspiration from biological neuroscience and is centered around stacking artificial neurons into layers and "training" them to process data.

  4. LeNet - Wikipedia

    en.wikipedia.org/wiki/LeNet

    LeNet-5 architecture (overview). LeNet is a series of convolutional neural network structure proposed by LeCun et al.. [1] The earliest version, LeNet-1, was trained in 1989.In general, when "LeNet" is referred to without a number, it refers to LeNet-5 (1998), the most well-known version.

  5. Neural network (machine learning) - Wikipedia

    en.wikipedia.org/wiki/Neural_network_(machine...

    For instance, deep convolutional neural networks (CNNs) have been important in handwritten digit recognition, achieving state-of-the-art performance. [243] This demonstrates the ability of ANNs to effectively process and interpret complex visual information, leading to advancements in fields ranging from automated surveillance to medical imaging.

  6. Types of artificial neural networks - Wikipedia

    en.wikipedia.org/wiki/Types_of_artificial_neural...

    A convolutional neural network (CNN, or ConvNet or shift invariant or space invariant) is a class of deep network, composed of one or more convolutional layers with fully connected layers (matching those in typical ANNs) on top. [17] [18] It uses tied weights and pooling layers. In particular, max-pooling. [19]

  7. Generative adversarial network - Wikipedia

    en.wikipedia.org/wiki/Generative_adversarial_network

    Deep convolutional GAN (DCGAN): [29] For both generator and discriminator, uses only deep networks consisting entirely of convolution-deconvolution layers, that is, fully convolutional networks. [30] Self-attention GAN (SAGAN): [31] Starts with the DCGAN, then adds residually-connected standard self-attention modules to the generator and ...

  8. AlexNet - Wikipedia

    en.wikipedia.org/wiki/AlexNet

    AlexNet is a convolutional neural network (CNN) architecture, designed by Alex Krizhevsky in collaboration with Ilya Sutskever and Geoffrey Hinton, who was Krizhevsky's Ph.D. advisor at the University of Toronto in 2012.

  9. Convolutional layer - Wikipedia

    en.wikipedia.org/wiki/Convolutional_layer

    In artificial neural networks, a convolutional layer is a type of network layer that applies a convolution operation to the input. Convolutional layers are some of the primary building blocks of convolutional neural networks (CNNs), a class of neural network most commonly applied to images, video, audio, and other data that have the property of uniform translational symmetry.