Search results
Results from the WOW.Com Content Network
In algebraic geometry, a cone is a generalization of a vector bundle. Specifically, given a scheme X, the relative Spec = ...
A cone is a convex cone if + belongs to , for any positive scalars , , and any , in . [5] [6] A cone is convex if and only if +.This concept is meaningful for any vector space that allows the concept of "positive" scalar, such as spaces over the rational, algebraic, or (more commonly) the real numbers.
Cone of a circle. The original space X is in blue, and the collapsed end point v is in green.. In topology, especially algebraic topology, the cone of a topological space is intuitively obtained by stretching X into a cylinder and then collapsing one of its end faces to a point.
The definition of the tangent cone can be extended to abstract algebraic varieties, and even to general Noetherian schemes. Let X be an algebraic variety, x a point of X, and (O X,x, m) be the local ring of X at x. Then the tangent cone to X at x is the spectrum of the associated graded ring of O X,x with respect to the m-adic filtration:
The definition of a cone may be extended to higher dimensions; see convex cone. In this case, one says that a convex set C in the real vector space R n {\displaystyle \mathbb {R} ^{n}} is a cone (with apex at the origin) if for every vector x in C and every nonnegative real number a , the vector ax is in C . [ 2 ]
The normal cone C X Y or / of an embedding i: X → Y, defined by some sheaf of ideals I is defined as the relative Spec (= / +).. When the embedding i is regular the normal cone is the normal bundle, the vector bundle on X corresponding to the dual of the sheaf I/I 2.
The vector spaces () and () are dual to each other by the intersection pairing, and the nef cone is (by definition) the dual cone of the cone of curves. [ 6 ] A significant problem in algebraic geometry is to analyze which line bundles are ample , since that amounts to describing the different ways a variety can be embedded into projective space.
A more involved example is the role played by the cone of curves in the theory of minimal models of algebraic varieties. Briefly, the goal of that theory is as follows: given a (mildly singular) projective variety X {\displaystyle X} , find a (mildly singular) variety X ′ {\displaystyle X'} which is birational to X {\displaystyle X} , and ...