enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Inner product space - Wikipedia

    en.wikipedia.org/wiki/Inner_product_space

    In mathematics, an inner product space (or, rarely, a Hausdorff pre-Hilbert space [1] [2]) is a real vector space or a complex vector space with an operation called an inner product. The inner product of two vectors in the space is a scalar, often denoted with angle brackets such as in , .

  3. Dot product - Wikipedia

    en.wikipedia.org/wiki/Dot_product

    It is often called the inner product (or rarely the projection product) of Euclidean space, even though it is not the only inner product that can be defined on Euclidean space (see Inner product space for more). Algebraically, the dot product is the sum of the products of the corresponding entries of the two sequences of numbers.

  4. Petersson inner product - Wikipedia

    en.wikipedia.org/wiki/Petersson_inner_product

    The integral is absolutely convergent and the Petersson inner product is a positive definite Hermitian form. For the Hecke operators T n {\displaystyle T_{n}} , and for forms f , g {\displaystyle f,g} of level Γ 0 {\displaystyle \Gamma _{0}} , we have:

  5. Riemannian manifold - Wikipedia

    en.wikipedia.org/wiki/Riemannian_manifold

    The requirement that is a positive-definite inner product then says exactly that this matrix-valued function is a symmetric positive-definite matrix at . In terms of the tensor algebra , the Riemannian metric can be written in terms of the dual basis { d x 1 , … , d x n } {\displaystyle \{dx^{1},\ldots ,dx^{n}\}} of the cotangent bundle as

  6. Linear algebra - Wikipedia

    en.wikipedia.org/wiki/Linear_algebra

    The inner product is an example of a bilinear form, and it gives the vector space a geometric structure by allowing for the definition of length and angles. Formally, an inner product is a map ⋅ , ⋅ : V × V → F {\displaystyle \langle \cdot ,\cdot \rangle :V\times V\to F}

  7. First fundamental form - Wikipedia

    en.wikipedia.org/wiki/First_fundamental_form

    In differential geometry, the first fundamental form is the inner product on the tangent space of a surface in three-dimensional Euclidean space which is induced canonically from the dot product of R 3. It permits the calculation of curvature and metric properties of a surface such as length and area in a manner consistent with the ambient space.

  8. Should You Use Ice or Heat for Your Back Pain? - AOL

    www.aol.com/ice-heat-back-pain-133000090.html

    "Hearst Magazines and Yahoo may earn commission or revenue on some items through these links." Most people experience some back pain at some point in their lives. For others, the discomfort is a ...

  9. Hilbert space - Wikipedia

    en.wikipedia.org/wiki/Hilbert_space

    A real inner product space is defined in the same way, except that H is a real vector space and the inner product takes real values. Such an inner product will be a bilinear map and ( H , H , ⋅ , ⋅ ) {\displaystyle (H,H,\langle \cdot ,\cdot \rangle )} will form a dual system .