Search results
Results from the WOW.Com Content Network
The forces have a turning effect or moment called a torque about an axis which is normal (perpendicular) to the plane of the forces. The SI unit for the torque of the couple is newton metre. If the two forces are F and −F, then the magnitude of the torque is given by the following formula: = where is the moment of couple; F is the magnitude ...
In physics and mechanics, torque is the rotational analogue of linear force. [1] It is also referred to as the moment of force (also abbreviated to moment). The symbol for torque is typically , the lowercase Greek letter tau. When being referred to as moment of force, it is commonly denoted by M.
The moment of force, or torque, is a first moment: =, or, more generally, .; Similarly, angular momentum is the 1st moment of momentum: =.Momentum itself is not a moment.; The electric dipole moment is also a 1st moment: = for two opposite point charges or () for a distributed charge with charge density ().
A force has a point of application and a line of action, therefore it defines the Plücker coordinates of a line in space and has zero pitch. A torque, on the other hand, is a pure moment that is not bound to a line in space and is an infinite pitch screw. The ratio of these two magnitudes defines the pitch of the screw.
The theorem states that the torque of a resultant of two concurrent forces about any point is equal to the algebraic sum of the torques of its components about the same point. In other words, "If many concurrent forces are acting on a body, then the algebraic sum of torques of all the forces about a point in the plane of the forces is equal to ...
The line of action is shown as the vertical dotted line. It extends in both directions relative to the force vector, but is most useful where it defines the moment arm. In physics, the line of action (also called line of application) of a force (F →) is a geometric representation of how the
A force couple results from equal and opposite forces, acting on two different points of a rigid body. The sum (resultant) of these forces may cancel, but their effect on the body is the couple or torque T .
where b is the force acting on the body per unit mass (dimensions of acceleration, misleadingly called the "body force"), and dm = ρ dV is an infinitesimal mass element of the body. Body forces and contact forces acting on the body lead to corresponding moments ( torques ) of those forces relative to a given point.